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a b s t r a c t 

Managers and decision makers need to know if variables measured by environmental monitoring programs are in- 

creasing or decreasing, both at individual sites and at larger spatial scales, and the degree of statistical support for 

these assessments. Traditionally, null hypothesis significance testing (NHST) has been used to evaluate whether 

an assessed trend is a reliable estimate of the true (i.e., population) trend but has two shortcomings. First, failure 

to achieve “statistical significance ” is often falsely interpreted as evidence that there was no trend. Second, the 

acceptable Type 1 error risk tends to be chosen arbitrarily and without consideration of the risk of failing to iden- 

tify important trends. As an alternative to NHST, we propose a continuous measure of confidence in the direction 

of an individual site trend based on the posterior probability distribution. Confidence that the trend direction is 

correctly inferred (i.e., that the assessed trend direction has the same sign as the population value) is expressed as 

a probability. The approach is extended to assessing confidence in the direction of aggregate trends (i.e., trends 

observed over multiple sites representing a spatial domain such as a geographic region). The aggregate trend 

assessment accounts for the confidence in the individual site trends and spatial correlation in the observations, 

which reduces the effective size of the dataset. The approach is demonstrated for site and aggregate river water 

quality trends for 352 sites in New Zealand. Compact graphical reporting of the results indicated appreciable 

variation in trend direction between sites for all variables, as well as patterns in trend direction at larger spatial 

scales. The new method provides decision makers with a more complete description of the statistical support 

for the assessment of trend direction than an arbitrary “significant/not significant ” designation associated with 

NHST. 

1

 

m  

a  

(  

m  

j  

s  

a  

t  

o  

a  

a  

m  

s  

(  

o  

t

 

s  

t  

S  

r  

o  

m  

t

 

a  

d  

i  

p  

t  

e  

h

R

2

(

. Introduction 

Environmental management is generally associated with regular

onitoring (e.g., weekly, monthly, annually) and reporting of char-

cteristic indicators of environmental quality such as air quality

 Sicard et al. 2021 ), water quality ( Behmel et al. 2016 ) and biological

easures ( Cairns and Pratt 1993 ). Typically, monitoring data is sub-

ect to trend analysis to assess how the measures have changed at a

ite over time ( Davies-Colley et al. 2011 ; Oelsner et al. 2017 ). Gener-

lly, managers and decision makers are interested in the trend direc-

ion, strength (i.e., consistency of increases or decreases in successive

bservations) and rate (change in the observed quantity per unit time)

t both individual sites and at larger spatial scales. Assessment of trends

t scales larger than individual sites is also relevant because environ-

ental changes are often driven by pressures that act over broad areas,

uch as diffuse source emissions of contaminants or climatic changes

 Isbell et al. 2017 ), and management actions are generally implemented
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ver similarly broad areas, thereby potentially influencing many moni-

oring sites simultaneously ( Cash et al. 2006 ; Cumming et al. 2006 ). 

The most commonly used approaches to assessing the direction and

trength of a temporal trend in an environmental variable and the

rend’s rate at the site-scale are Kendall’s tau ( 𝜏, Mann, 1945 ; Hirsch and

lack, 1984 ) and Sen-Theil regression ( Theil 1950 ; Hirsch et al. 1982 ),

espectively. These methods quantify monotone trends (i.e., increasing

r decreasing) and are used because they are robust to non-normal data,

issing values, and censored values, which are common in environmen-

al monitoring data ( Hirsch and Slack 1984 ; Helsel et al. 2020 ). 

Because trend analysis is based on building a statistical model from

 limited number of observations (i.e., the sample), quantifications of

irection and strength are accompanied by assessments of their reliabil-

ty as estimates of the real (i.e., population) trend. The traditional ap-

roach to assessing the reliability of the estimated 𝜏 is the Mann–Kendall

est, which tests the null hypothesis that 𝜏 = 0 . However, null hypoth-

sis significance testing (NHST) has been subject to considerable criti-

ism (e.g., Rozeboom 1960 ; Cohen 1994 ; Wasserstein and Lazar 2016 )
t 2022 
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o  
nd its use in trend assessment has been challenged for two key reasons

 Vogel et al. 2013 ; Hirsch et al. 2015 ). First, the failure to achieve statis-

ical significance is often falsely interpreted as evidence that there was

o trend. This is an incorrect conclusion; a ‘large’ p -value (i.e., p > 0.05)

ndicates only that the data are not unusual if the null hypothesis were

rue, and none of the other assumptions were violated ( Greenland et al.

016 ). The null hypothesis is also “unrealistic and misleading ” because

here will always be a trend, which “may be trivially small but will al-

ays be positive or negative ” ( Cohen 1994 ; Jones and Tukey 2000 ). The

roblem with testing the null hypothesis that the trend is zero is that it

uggests that the null hypothesis might be true and therefore encourages

he incorrect interpretation of a non-significant result as indicating no

rend. 

The second reason for challenging the use of NHST in trend analysis

s that it involves the use of an arbitrary value alpha ( 𝛼) to designate a

rend as significant. Generally, 𝛼 is set at a low value (e.g., 0.05) to min-

mize the risk of incorrectly rejecting the null hypothesis (i.e., making

ype I error). However, from a management perspective, the acceptable

ype 1 error risk should not be defined by an arbitrary statistical rule.

he acceptable risk of a Type 1 error is a normative decision that needs

o be balanced against the risk of Type 2 errors (failure to recognize an

mportant trend that should have provided the basis for acting; Vogel

t al. 2013 ). 

Alternatives to NHST for making inferences about trend direction

ave been suggested. McBride (2019) proposed a method to assess

he risk of misclassifying trend direction that is based on calculating

ayesian credible intervals from the posterior probability distribution.

he approach does not require postulating an unrealistic null hypoth-

sis and assumes that there is always a trend no matter how small.

cBride (2019) demonstrated this approach based on estimating the

lope of the Sen-Theil regression line. McBride (2019) calculated the risk

f misclassification of the trend direction, using the 100( 1 − 2 𝛼) credible

nterval. If this interval does not contain zero, the trend direction mis-

lassification risk is < 𝛼. The use of the 100( 1 − 2 𝛼) credible interval to

ontrol the error risk to < 𝛼 arises because a trend can only be in one

irection. Hirsch et al. (2015) and Murphy (2020) also used the poste-

ior distribution to estimate the likelihood that the assessed trend direc-

ion was correct, however the underlying statistical model in this case

as the Weighted Regressions on Time, Discharge, and Season method.

hoquette et al. (2019) used the Mann–Kendall test p -value to define

 continuous measure of likelihood that the trend was positive or neg-

tive. They estimated the likelihood that the assessed direction of the

rend was correct (i.e., was the same as the true trend) from the Mann–

endall test p -value as [1 – p -value/2]. 

There is often interest in making statements about the direction of

 trend in an environmental variable over scales larger than that repre-

ented by individual sites ( Helsel and Frans 2006 ). Accordingly, results

f trend assessments for multiple individual sites are often aggregated

n tables or graphs. For example, Larned et al. (2016) presented tabula-

ions of numbers of degrading and improving 10-year trends in a variety

f water quality variables for sites across New Zealand grouped by en-

ironmentally defined classes and presented box plots showing the dis-

ributions of the Theil-Sen slopes. Similarly, Monteith et al. (2014) plot-

ed and tabulated rates of change of anions and cations at 22 lakes and

treams of the UK Acid Waters Monitoring Network. This method of pre-

enting results loses some of the information that is available because it

oes not account for confidence in the assessed individual site trends.

n alternative approach for quantifying aggregate trends is the regional

endall test ( Helsel and Frans 2006 ). 

Both the simple tabulation of site-scale trend assessments and the

egional Kendall test have the limitation that they do not account for

patial correlation that may exist among sites within a monitoring net-

ork. Spatial correlation implies a degree of redundancy in the avail-

ble data because a trend direction at a site is likely to be consistent with

earby sites. From a statistical perspective, this redundancy reduces the

ffective size of the dataset and results in an overly liberal assessment of
2 
onfidence in the aggregate trend ( Douglas et al. 2000 ; Yue and Wang

002 ). 

In this article we show how the strength of evidence in assessments

f trend direction made using the Mann–Kendall statistic can be quan-

ified by a continuous measure of confidence in trend direction. Our

ethod is novel in that it does not need to refer to the p -value and does

ot require the analyst to make decisions concerning acceptable error

isk. We also describe a novel method for assessing trend direction and

trength at scales larger than individual sites that is based on aggrega-

ion of individual site trend assessments. Confidence in the aggregate

rend direction is assessed analogously to our method for assessment of

onfidence in the direction of individual site trends, and accounts for

he confidence associated with each individual site trend and spatial

utocorrelation between sites. To demonstrate our methods for trend

irection assessment, we analyse 20-year river water quality trends of

ix water quality variables at 352 monitoring sites across New Zealand.

e quantify confidence in trend direction at the scale of sites, the whole

ountry and selected regions and suggest some compact graphical meth-

ds to present these assessments. 

. Material and methods 

.1. Assessment of confidence in trend direction for individual sites 

Kendall’s tau ( 𝜏) evaluates the direction and strength of a monotonic

rend in a variable 𝑋, representing observations at a site of an envi-

onmental characteristic (e.g., a water quality variable measured each

onth in a river, Helsel et al. 2020 ). To calculate 𝜏 for data that is

ystematically collected with a set frequency, the observations of a vari-

ble 𝑋 are first ordered by increasing time and then each observation is

ompared to all its subsequent observations. From these comparisons,

he Mann–Kendall statistic ( ̂𝑆 ) is calculated as: 

̂
 = 

𝑁−1 ∑
𝑖 =1 

𝑁 ∑
𝑗=1+ 𝑖 

𝑠𝑖𝑔𝑛 
(
𝑥 𝑖 − 𝑥 𝑗 

)
(1)

here 𝑁 is the number of observations, 𝑥 𝑖 and 𝑥 𝑗 are the observations

t times i and j and 𝑠𝑖𝑔𝑛 () is equal to + 1 if 𝑥 𝑖 is greater than 𝑥 𝑗 and -1

f 𝑥 𝑖 is less than 𝑥 𝑗 . The statistic �̂� can be understood as the number of

oncordant pairs minus the number of discordant pairs so that positive

alues indicate a tendency for values to increase over time, an increasing

rend, and vice versa. We include the hat operator when denoting �̂� to

ndicate that is an estimate, based on the observations, of the population

alue of 𝑆. Finally, �̂� is standardised by the number of pairs of compared

bservations so that 𝜏 is a standardised measure of the strength of the

onotonic trend in 𝑋, which varies between -1 and + 1: 

= 

�̂� 

𝑁 ( 𝑁 − 1 ) ∕2 
(2) 

nd: 

 

𝜏 = { 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑓 𝜏 < 0 
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑓 𝜏 > 0 (3)

here 𝐷 

𝜏 is the assessed site trend direction. 

Traditionally, the strength of the inference associated with 𝜏 is based

n the Mann–Kendall test, which is a test of the null hypothesis ( 𝐻 0 )

hat S = 0 (i.e., there has been no change in the central tendency of

he observations). A trend is declared to be statistically significant if

hat hypothesis is rejected, in which case the p -value associated with

he hypothesis is less than the prescribed significance level ( 𝛼). The p -

alue is calculated by first noting that, when N > 10, 𝑆 is asymptotically

ormal ( Mann 1945 ; Kendall 1975 ). In the absence of tied values (i.e.,

airs for which 𝑥 𝑗 = 𝑥 𝑖 ), the variance of 𝑆 is: 

 𝑎𝑟 ( 𝑆 ) = ( 𝑁∕18 ) ( 𝑁 − 1 ) ( 2 𝑁 + 5 ) (4)

( Hirsch et al. 1982 ). The p -value is determined by transforming the

bserved value of �̂� to its equivalent standard normal deviate ( Z score)
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s follows: 

 𝑆 = { 

�̂� −1 √
𝑉 𝑎𝑟 ( 𝑆 ) 

𝑖𝑓 �̂� > 0 

0 𝑖𝑓 �̂� = 0 
�̂� +1 √
𝑉 𝑎𝑟 ( 𝑆 ) 

𝑖𝑓 �̂� < 0 
(5)

The resulting 𝑍 𝑆 is evaluated against the standard normal cumu-

ative distribution function and 𝐻 0 is rejected if |𝑍 𝑆 | > 𝑍 𝛼∕2 , where 𝛼

s the confidence level, and 𝑍 𝛼∕2 , is the value needed to generate an

rea of 𝛼∕2 in each tail of the normal distribution. When observations

nclude ties and censored values there are adjustments to the calcula-

ion of �̂� and 𝑉 𝑎𝑟 ( 𝑆) ( Helsel 2011 ). When the observations are seasonal,

easonal versions of 𝜏 and �̂� are calculated in two steps. First, for each

eason, the calculations of �̂� and 𝑉 𝑎𝑟 ( 𝑆) are made from data pertain-

ng to observations in that season. Second, the seasonal values of �̂� and

 𝑎𝑟 ( 𝑆) are summed over all seasons and are used to calculate 𝜏, the

easonal Kendall test statistic and its variance ( Hirsch et al. 1982 ). 

We propose calculating a continuous measure of confidence in the

ssessed trend direction based on the posterior probability distribution

f 𝑆, the true (i.e., population) difference in concordant and discordant

airs. The posterior probability distribution of S is given by a normal

istribution with mean of �̂� and variance of 𝑉 𝑎𝑟 ( 𝑆) (as described in Eq.

4 )). From this information, confidence in assessed trend direction can

e evaluated as the proportion of the probability distribution that has

he same sign as �̂� . A graphical demonstration of the procedure is shown

n Fig. 1 , where the posterior probability distribution for �̂� is shown by

he blue line. 

In Fig. 1 (a), the trend is assessed to be positive because �̂� lies to

he right of the zero (red) line. The shaded area to the right of zero

epresents the probability that the true (i.e., population) trend has the

irection indicated by �̂� , which represents the confidence in the assessed

irection. In Fig. 1 (b), the trend is assessed to be negative because �̂� 

ies to the left of the zero (red) line. The shaded area to the left of zero

epresents the confidence in the assessed direction. 

The probability the assessed site trend direction is the same as the

rue (i.e., population) trend is described mathematically as: 

 

𝜏 = { 

∞
∫
0 
𝑁 

(
�̂� , 𝑉 𝑎𝑟 ( 𝑆 ) 

)
𝑖𝑓 �̂� > 0 

0 . 5 𝑖𝑓 �̂� = 0 
0 
∫
−∞

𝑁 

(
�̂� , 𝑉 𝑎𝑟 ( 𝑆 ) 

)
𝑖𝑓 �̂� < 0 

(6)

Where we refer to 𝐶 

𝜏 as the confidence in the assessed trend direc-

ion, and N represents the normal distribution function. In practice the

ntegrals described in Eq. (6 ) can be calculated by first transforming the

alue of 𝑆 = 0 on the posterior probability distribution into a standard

ormal deviate Z as follows: 

 0 = { 

�̂� −1 √
𝑉 𝑎𝑟 ( 𝑆 ) 

𝑖𝑓 �̂� > 0 

0 𝑖𝑓 �̂� = 0 
− 
(
�̂� +1 

)√
𝑉 𝑎𝑟 ( 𝑆 ) 

𝑖𝑓 �̂� < 0 
(7)

𝐶 

𝜏 is then calculated as area under the standard normal distribution

o the left of 𝑍 0 using the quantile function for the normal distribution.

he value 𝐶 

𝜏 can be interpreted as the probability that 𝐷 

𝜏 (i.e., the

ign of the calculated 𝜏 statistic) indicates the same direction as the true

rend (i.e., that the assessed trend direction is correct). The value 𝐶 

𝜏

anges between 0.5, indicating the true trend direction is equally likely

o be in the opposite direction to that indicated by 𝐷 

𝜏 , to 1, indicating

omplete confidence that 𝐷 

𝜏 is the same as the true trend. 

.2. Aggregate trend direction and strength assessment 

For a domain of interest with several monitoring sites, we define a

tandardized measure of aggregate trend strength to be the proportion

f site trends that are in the modal direction. We denote this statistic

s capital tau with a hat operator to signify that it is an estimate of the
3 
opulation value ( ̂T ). We also define the aggregate trend direction to be

he modal (i.e., most frequently occurring) direction of the individual

ite trends ( D 

T ). 

The statistic T̂ , and confidence in the aggregate trend direction ( 𝐶 

T ),

re calculated by letting the sites within the domain be indexed by m ,

o that 𝑚 ∈ { 1 , … , 𝑀 } . The aggregate trend direction is calculated as: 

 

T = 𝑠𝑖𝑔 𝑛 

( M ∑
m=1 

𝑠𝑖𝑔 𝑛 
(
�̂� 𝑚 

)) 

(8)

Let 𝐼 be a random Bernoulli distributed variable for which the value

 indicates the assessed site trend direction is the same as the aggregate

rend direction ( 𝐷 

T ) with probability 𝑝 given by: 

 = { 𝐶 

𝜏 𝑖𝑓 𝑠𝑖𝑔𝑛 
(
�̂� 

)
= D 

T 

1 − 𝐶 

𝜏 𝑖𝑓 𝑠𝑖𝑔𝑛 
(
�̂� 

)
≠ D 

T (9)

nd for which the value 0 indicates the direction of a site trend is oppo-

ite to the modal direction with probability 1 − 𝑝 . Then, the estimated

roportion of sites with trends in the modal direction is: 

̂
 = 

1 
𝑀 

𝑀 ∑
𝑚 =1 

𝐼 𝑚 (10)

here T̂ can vary between 0.5 and 1. Given the variance of a random

ernoulli distributed variable is 𝑉 𝑎𝑟 ( 𝐼) = 𝑝 ( 1 − 𝑝 ) , and assuming the site

rends are independent, the variance of T is: 

 𝑎𝑟 ( T ) = 

1 
𝑀 

2 

𝑀 ∑
𝑚 =1 

𝑉 𝑎𝑟 
(
𝐼 𝑚 

)
= 

1 
𝑀 

2 

𝑀 ∑
𝑚 =1 

𝑝 𝑚 
(
1 − 𝑝 𝑚 

)
(11)

A continuous measure of confidence in the aggregate trend direction

 𝐷 

T ) is found analogously to the confidence in the direction of a site

rend by calculating the proportion of the posterior probability distribu-

ion for which T > 0 . 5 . 

 

T = 

∞
∫
0 . 5 

𝑁 

(
T̂ , 𝑉 𝑎𝑟 ( T ) 

)
(12)

here 𝐶 

T is the confidence in the aggregate trend direction. In prac-

ice, 𝐶 

T can be calculated by first transforming the value of T = 0 . 5 on

he posterior probability distribution into a standard normal deviate as

ollows: 

 0 . 5 = 

T̂ − 0 . 5 √
𝑉 𝑎𝑟 ( T ) 

(13)

𝐶 

T is then calculated as area under the standard normal distribution

o the left of 𝑍 0 . 5 using the quantile function for the normal distribution.

If there is spatial correlation in the assessed trend directions at the

ndividual sites, the assumption of independence when calculating the

ariance of T above is violated ( Douglas et al. 2000 ). Spatial correla-

ion means that the effective sample size of the dataset is less than the

umber of sites and this results in under-estimation of the variance and

herefore over-estimation of 𝐶 

T . The method of Douglas et al. (2000) can

e used to calculate the variance of T that is “corrected ” for spatial cor-

elation: 

 𝑎𝑟 ( T ) = 

1 
𝑀 

2 

[ 

𝑀 ∑
𝑘 =1 

𝑉 𝑎𝑟 
(
𝐼 𝑘 
)
+ 2 

𝑀−1 ∑
𝑘 =1 

𝑀− 𝑘 ∑
𝑙=1 

𝐶𝑜𝑣 
(
𝐼 𝑘 , 𝐼 𝑘 + 𝑙 

)] 

(14)

here the covariance between monitoring sites is calculated as: 

𝑜𝑣 
(
𝐼 𝑘 , 𝐼 𝑘 + 𝑙 

)
= 

√ 

𝑉 𝑎𝑟 
(
𝐼 𝑘 
)
𝑉 𝑎𝑟 

(
𝐼 𝑘 + 𝑙 

)
𝜌𝑐 
𝑘, 𝑘 + 𝑙 (15)

nd where 𝜌𝑐 
𝑘,𝑘 +1 is replaced by the sample cross-correlation coefficient

 𝑘,𝑘 + 𝑙 ( Yue and Wang 2002 ), which is computed from the observation

ime series at site k and k + l as: 

 𝑘,𝑘 + 𝑙 = 

1 
𝑊 

∑𝑊 

𝑖 =1 

(
𝑥 
𝑘,𝑖 

− 𝑥 𝑘 

)(
𝑥 
𝑘 + 𝑙,𝑖 − 𝑥 𝑘 + 𝑙 

)
√ 

𝑉 𝑎𝑟 
(
𝑥 𝑘 

)
𝑉 𝑎𝑟 

(
𝑥 𝑘 + 𝑙 

) (16)

here 𝑥 𝑖 
𝑘 

and 𝑥 𝑖 
𝑘 + 𝑙 represent one set of W concurrent observations at the

ites. The alternative estimate of 𝑉 𝑎𝑟 (T) given by Eq. 14 can be used to

alculate confidence in the aggregate trend direction 𝐶 

T using Eq. (13 ).



T.H. Snelder, C. Fraser and A.L. Whitehead Environmental Challenges 9 (2022) 100601 

Fig. 1. Using the posterior probability distribution to assess 

confidence in the trend direction. The blue curve is the poste- 

rior probability distribution that encompasses an area of unity 

and is centered on the estimated value of the Mann–Kendall 

statistic ( ̂𝑺 ) with variance 𝑽 𝒂 𝒓 ( 𝑺 ) . For (a), the estimated trend 

is positive and the area under the curve with �̂� > 0 indicates 

the probability that the true trend is positive and that the es- 

timated trend has the same sign as the true trend. For (b), the 

estimated trend is negative and the area under the curve with 

�̂� < 0 indicates the probability the trend has the same sign as 

the true trend. 
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.3. Example application to water quality data in New Zealand 

River water quality is monitored at sites distributed across New

ealand by 15 regional councils and the National Institute of Water and

tmospheric Research (NIWA) ( Fig. 2 ). These monitoring programmes

re well-established and timeseries of observations have increased over

ime so that there are now more than 1000 sites at which a range of

ater quality variables have been regularly observed for up to 30 years

 Larned et al. 2016 ). These river water quality data are regularly used

o produce numerous reports on water quality state and trends (e.g.,

arned et al. 2004 , 2016 ). 

In this study we assessed river water quality trends for the period

001 to 2020 (i.e., 20 years) for five physico-chemical variables: dis-

olved reactive phosphorus (DRP mg m 

− 3 ), nitrate-nitrite nitrogen (NNN

g m 

− 3 ), total nitrogen (TN mg m 

− 3 ), total phosphorus (TP mg m 

− 3 ),

isual clarity (CLAR m), and the microbiological variable Escherichia coli

ECOLI MPN 100 ml − 1 ). A period of 20 years was chosen because pre-

ious studies have shown that trends for shorter timescales are strongly

nfluenced by interannual climate variability ( Snelder et al. 2021a , b ). 

We acquired and collated the water quality data for the 20-year pe-

iod from each council and NIWA. As part of collating the datasets we

ndertook data checks and corrections described by Larned et al. (2016) .

or most variables, there was variation in analytical methods across the
4 
ata collecting agencies. For each variable, only data corresponding to

he most widely used and comparable procedures were retained and

he remaining data omitted as described by Larned et al. (2016) . The

ndividual datasets contained censored values indicating that reported

alues were either below the analytical detection limit or above the re-

orting limit. Censored values were identified in all datasets and these

ntries were consistently indicated by the combination of the reported

alues and a flag indicating the type of censoring. 

All variables were observed at monthly, bi-monthly or quarterly sam-

ling intervals, which we treated as ‘seasons’ for the trend analysis.

here were two common deviations from a fixed sample interval: (1)

he collection of more than one observation in a sample interval (e.g.,

wo observations within a month) and (2) a change in the sample in-

erval within the time period. The second type of deviation was most

ommon because many sites had changed from lower frequency (e.g.,

i-monthly or quarterly) to monthly sampling during the time period.

or the first type of deviation, we took the observation closest to the

idpoint of the sample interval to represent the season’s observation.

or the second type of deviation, we derived a time series that was con-

istently of the lower frequency by taking, from the higher frequency

art of the record, those observations that were closest to the midpoint

f the coarser sampling interval. Taking the observation closest to the

idpoint of the sample interval, rather than averaging over samples



T.H. Snelder, C. Fraser and A.L. Whitehead Environmental Challenges 9 (2022) 100601 

Fig. 2. Map of New Zealand showing the location of 

the 352 river monitoring sites. 
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ithin the sample interval, was applied to avoid inducing a trend in the

ariance ( Helsel et al. 2020 ). 

To provide for robust representation of the 20-year time period for

ach site and variable combination and comparison of trends between

ites, we filtered the sites to have an acceptable proportion of gaps (i.e.,

issing values in sampling intervals) and distribution of gaps between

he start and end date of the time period. Our choice of filtering rules

epresented a trade-off between highly restrictive rules that would en-

ure a high level of robustness of the individual trend analyses but ex-

luded numerous sites thereby reducing spatial coverage, and highly

enient rules that would retain more sites but decrease the robustness of

he individual trend assessments. Our filtering rules required that sites

ad observations for at least 90% of the years in the period and 90%

f the sample intervals. If a site failed to comply with the filtering rules

hen sampling intervals were months, the data were coarsened to bi-

onthly and then quarterly and the highest frequency times series that

omplied with the filter rules was retained for analysis. It is noted that

he retained data implies that the analysis has variable levels of statis-
5 
ical power and temporal representativeness across the sites. After ap-

lication of the filtering rules, the dataset comprised 308,300 observed

alues of the variables at 352 sites across New Zealand ( Table 1 ). 

We assessed the seasonality of each of the filtered site and variable

ombinations. Where there was a statistically significant difference in

he observations grouped by season (Kruskal Wallis test 𝛼 ≤ 0.05), we

sed the Seasonal Kendall statistic to calculate �̂� and 𝐶 

𝜏 otherwise we

sed the Mann–Kendall statistic. For each site and variable combination,

e expressed confidence in trend direction ( 𝐶 

𝜏 ) using four categories

sed by Choquette et al. (2019 ; Table 2 ). For each variable, we assessed

he direction of trends at national and regional scales and confidence in

hose assessments, by aggregation of all sites (i.e., national scale) and

y the regions shown in Fig. 2 , respectively, based on 𝐷 

T and 𝐶 

T . 

All analyses were performed in the R Statistical Computing Environ-

ent ( R Core Team 2021 ). The NADA package (Lopaka Lee 2020 ) was

sed to calculate the Mann Kendall statistic in the presence of tied and

ensored values using methods described by ( Helsel 2011 ). All data and

ode are provided as supplementary material. 
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Table 1 

Sites and data retained for trend assessment of six water quality variables after application of the filtering rules. 

Variable Abbreviation Number of sites Number of 

observations 

Proportion of sites with 

monthly, bimonthly and 

quarterly observations 

(%) 

Proportion of sites that 

were seasonal 

(%) 

Visual clarity CLAR 207 42393 59, 15, 26 69 

Dissolved reactive 

phosphorus 

DRP 313 68221 61, 12, 27 61 

Nitrate-nitrite 

nitrogen 

NNN 303 62744 58, 13, 29 94 

Total nitrogen TN 137 27455 52, 19, 29 82 

Total phosphorus TP 272 58454 66, 12, 22 58 

Escherichia coli ECOLI 262 49033 37, 11, 52 69 

Fig. 3. Summary plot representing the proportion of sites with increasing and decreasing 20-year trends for six water quality variables at each categorical level 

of confidence for 𝐂 

𝝉 defined in Table 2 . Decreasing trends indicate water quality improvement and all variables except CLAR, for which increasing trends indicate 

improvement. 

Table 2 

Level of confidence categories used to convey the confidence in the 

assessed trend direction. 

Categorical level of confidence in assessed trend direction Value of C 

Highly likely 0.95 to 1.00 

Very likely 0.90 – 0.95 

Likely 0.67 – 0.90 

Uncertain 0.50 – 0.67 
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. Results 

The proportions of individual site trends belonging to each categori-

al level of confidence in the assessed direction of the 20-year trends are

hown in Fig. 3 . Decreasing trends indicate water quality improvement

nd all variables except CLAR, for which increasing trends indicate im-

rovement. At the national scale, there was a dominance of sites with

ecreasing trends with at least “likely ” levels of confidence for DRP, and

P ( Fig. 3 ). For DRP and TP, 58% and 63% of decreasing site trends were
 i  

6 
n the “Highly likely ” category, respectively (the strongest evidence of

ecrease). Correspondingly for DRP and TP, a minority of increasing site

rends (27% and 11% respectively) were assigned to at least the “Likely ”

ategory. For NNN and TN, a majority of sites had increasing trends (in-

icating degradation) with at least “Likely ” levels of confidence (55%

nd 55%, respectively, Fig. 3 ). For CLAR and ECOLI there was a more

ven split in the proportions of increasing and decreasing trends. For

LAR and ECOLI decreasing trends, 36% and 36% of sites were assigned

o at least the “Likely ” category, respectively, and for increasing trends,

9% and 42% of sites were assigned to at least the “Likely ” category,

espectively. 

Observations made in each sample interval exhibited a degree of

ross-correlation between all pairs of sites for all water quality variables

 Fig. 4 ). Between site cross-correlation could be both negative and pos-

tive but there was a tendency for correlation to be positive. The mean

f the cross-correlations was largest (0.3) for NNN and least for ECOLI

0.03). 

A compact graphical representation of the results of the trend direc-

ion and strength assessment for sites aggregated nationally is shown

n Fig. 5 and in more detail in Table 3 . The aggregate trend direc-
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Fig. 4. Distributions of cross-correlations be- 

tween observations between all pairs of sites 

for each of the six water quality variables. The 

red dashed line indicates correlation of zero. 

Table 3 

Aggregate trend strength ( ̂𝐓 ), direction ( 𝑫 

𝐓 ) and confidence in assessed aggregate direction ( 𝑪 𝐓 ) for six variables and sites aggregated nationally and by four 

regions (for DRP and NNN only). Confidence in assessed aggregate direction ( 𝑪 𝐓 ) is shown for calculations that have been corrected for spatial correlation and 

calculations that have been left uncorrected. Confidence categories express 𝑪 𝐓 as defined by Table 2 . 

Variable Domain Number of sites T̂ 𝐷 

T 𝐶 T (Corrected) Confidence 

category 

(Corrected) 

𝐶 T 

(Uncorrected) 

Confidence 

category 

(Uncorrected) 

CLAR National 207 0.57 Increasing 0.78 Likely 1.00 Highly likely 

DRP National 313 0.71 Decreasing 1.00 Highly likely 1.00 Highly likely 

NNN National 303 0.57 Increasing 0.79 Likely 1.00 Highly likely 

TN National 137 0.58 Increasing 0.84 Likely 1.00 Highly likely 

TP National 272 0.83 Decreasing 1.00 Highly likely 1.00 Highly likely 

ECOLI National 262 0.53 Increasing 0.74 Likely 0.95 Very likely 

DRP Waikato 103 0.93 Decreasing 1.00 Highly likely 1.00 Highly likely 

Hawkes Bay 25 0.60 Increasing 0.78 Likely 0.95 Very likely 

Canterbury 42 0.79 Decreasing 1.00 Highly likely 1.00 Highly likely 

Southland 36 0.83 Decreasing 1.00 Highly likely 1.00 Highly likely 

NNN Waikato 103 0.61 Increasing 0.89 Likely 1.00 Highly likely 

Hawkes Bay 26 0.88 Decreasing 1.00 Highly likely 1.00 Highly likely 

Canterbury 45 0.62 Increasing 0.83 Likely 1.00 Highly likely 

Southland 38 0.84 Increasing 1.00 Highly likely 1.00 Highly likely 

t  

(  
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w  
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N  

t  

w  

t  
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ion ( 𝐷 

T ) was decreasing for DRP and TP and aggregate trend strength

 ̂T ) was > 0.7 ( Table 3 ). This is consistent with the dominance of de-

reasing individual sites trends for these variables ( Fig. 3 ). Confidence

n these assessed directions were “Highly likely ” ( Fig. 5 ) irrespective

hether or not the assignment had been corrected for spatial correla-

ion ( Table 3 ). The aggregate trend direction ( 𝐷 

T ) was increasing for

ariables CLAR, NNN, TN and ECOLI. The aggregate trend strength ( ̂T )
or these variables was between 0.53 (ECOLI) and 0.58 (TN). The uncor-

ected confidence in the assessed aggregate trend directions was “Highly
7 
ikely ” or “Very likely ” for these variables but reduced to “Likely ” for

ll four variables when confidence was corrected for spatial correlation

 Table 3 ). 

There were four regions with > 25 monitoring sites with DRP and

NN data that was consistent with the filtering rules. The aggregate

rend direction (D 

Т ) for three regions for DRP and NNN was consistent

ith the national scale direction (i.e., decreasing and increasing, respec-

ively; Fig. 6 ). However, for the Hawkes Bay region, these directions

ere reversed. After correction for spatial correlation, confidence in the
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Fig. 5. Aggregate trend strength ( ̂T ) and direction ( 𝑫 

𝐓 ) for 20-year trends for six water quality variables over all sites. Confidence in the aggregate direction (C Т ) is 

indicated by the four confidence categories (see Table 2 for details). Confidence is shown for calculations that have been corrected for spatial correlation ( Eq. (14 )). 

Fig. 6. Aggregate trend strength ( ̂T ) and direction ( 𝑫 

𝐓 ) for 20-year trends for DRP and NNN for sites in four regions with > 25 sites. See Fig. 5 for explanation of 

plot key. 

8 
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(  
ggregate trend direction (C 

Т ) was “Highly Likely ” for both variables in

nly the Southland region ( Table 3 ). 

. Discussion 

.1. Assessing confidence in trend direction rather than hypothesis testing 

The continuous measure of confidence in trend direction ( 𝐶 

𝜏 ) is an

lternative to the use of NHST for assessing the reliability of a site trend.

he difference between approaches is demonstrated by considering two

rend assessments, A and B, with positive Mann–Kendall �̂� values and

 -values of 0.04 and 0.14, respectively. A significance test with 𝛼 = 0.05,

ould reject the null-hypothesis for A at the 95% confidence level and

ould not reject the null-hypothesis for B. Using our trend direction as-

essment, positive trends for A and B would be inferred with 98% and

3% confidence in the direction, respectively. Because 𝐶 

𝜏 quantifies the

vidence that the trend is in the assessed direction (i.e., positive, or neg-

tive), it is consistent with the principle that there is always a trend and

oes not allow the conclusion that there was “no trend ” to be drawn.

onsequently, our trend direction assessment provides decision makers

ith a more complete description of the evidence than an arbitrary “sig-

ificant/not significant ” designation. 

The continuous measure of confidence in trend direction ( 𝐶 

𝜏 ) links

cBride’s (2019) use of the Bayesian credible interval to Choquette

t al.’s (2019) use of the Mann–Kendall test p -value to estimate the like-

ihood that the assessed trend direction is correct. Confidence in trend

irection ( 𝐶 

𝜏 ) retains the simple and robust frameworks for trend as-

essment provided by the Mann–Kendall correlation statistic but has

he advantage that it removes the need to choose an arbitrary 𝛼 value

o define a credible interval and does not invoke NHST. However, the

uantity 𝐶 

𝜏 is equal to Choquette et al.’s (2019) measure of likelihood

1 – p/2]. 𝐶 

𝜏 is also numerically equivalent to a Bayesian index of

ffect existence called Probability of Direction ( Greenland and Poole

013 ; Makowski et al. 2019 ). The Probability of Direction index does

ot require a prior distribution, nor does it rely on a null hypothesis,

nd is mathematically defined as the proportion of the posterior dis-

ribution that is of the median’s sign ( Makowski et al. 2019 ). An im-

ortant point that arises from this is that there is nothing intrinsically

rong with p -values, it is their misinterpretation that is the problem

 Makowski et al. 2019 ). 

Chen et al. (2021) refer to confidence and likelihood as qualitative

nd quantitative representations of uncertainty, respectively, with con-

dence including a degree of expert judgement. Hirsch et al. (2015) ,

hoquette et al. (2019) and Murphy (2020) used likelihood to refer to

heir probabilistic (i.e., based on quantitative statistical analysis) esti-

ates that the assessed direction of the trend was correct. We use ‘con-

dence’ because it is a more commonly used and understood term by

on-scientists, however. we acknowledge that it has the same meaning

 likelihood as defined by Chen et al. (2021) . 

We note that as the size of the sample (i.e., the number of obser-

ations) increases, confidence in trend direction increases. When the

ample size is very large, 𝐶 

𝜏 can be high, even if the trend rate is very

ow. It is important, therefore, that 𝐶 

𝜏 is interpreted correctly as the

onfidence in direction and not as the importance of the trend. 

.2. Aggregate trend strength and direction 

A further problem with using NHST arises when trends across multi-

le sites are aggregated to assess the direction of trends at scales larger

han that represented by individual sites. If only significant trends are

ounted, there is a loss of information about the general trend direction.

owever, if all trends are counted, it is important that the aggregation

ccounts for the confidence in each trend’s direction. The C 

T statistic

rovides a continuous measure of confidence in the aggregate trend di-

ection that is derived from all available site trends, and which accounts
9 
or the confidence in the individual trend direction assessments. An ad-

antage of the C 

T statistic over existing regional trend assessment meth-

ds is that it utilises individual site trend assessments as the input data

hereby creating a direct link between site-scale and aggregate trends.

his also means the C 

T statistic can be calculated from mixtures of in-

ividual site-scale trends including those that are assessed from data of

ifferent monitoring frequencies and for site trends that are judged to

e seasonal and non-seasonal. As a continuous measure of confidence in

ggregate trend direction, C 

T has the same advantages as confidence in

he direction of individual trends ( 𝐶 

𝜏 ) (i.e., it does not allow the con-

lusion that there was “no trend ” to be drawn and it provides decision

akers a complete description of the evidence). 

The C 

T statistic also accounts for spatial correlation that may exist

mong sites within a monitoring network, which is not accounted for by

imple tabulation of site trends and is not always explicitly accounted

or by ‘regional’ trend assessment methods (e.g., Helsel and Frans 2006 ).

he presence of spatial correlation results in under-estimation of the

ariance and over-estimation of confidence in trend assessment and pre-

ents the analytical derivation of the posterior probability distribution

f T ( Douglas et al. 2000 ; Yue and Wang 2002 ). The approach pre-

ented here develops an approximate distribution for T based on the

ross-correlations of the observations ( Eq. 16 ). The implications of ac-

ounting for spatial correlation are shown by our study where, when 𝐶 

T 

as corrected for spatial correlation, confidence in the aggregate trend

irections often decreased ( Table 3 ). 

We refer to ‘aggregate’ rather than ‘regional’ trends because long-

erm monitoring sites are generally selected for a range of purposes and

herefore unlikely to be spatially representative of a region, however

hat is defined. For example, the national network of river water quality

onitoring sites in New Zealand over-represents low elevation sites that

re more likely to be degraded than upland sites whose catchments are

ess dominated by agricultural and urban land use ( Larned et al. 2014 ).

herefore, the national and regional T̂ and 𝐶 

T statistics presented here

epresent the aggregate trend direction as indicated by the monitoring

etwork but cannot be considered to represent all national or regional

ivers. In addition, site aggregation can be undertaken based on other

han contiguous geographic regions ( Helsel and Frans 2006 ). For exam-

le, sites could be aggregated by classes based on environmental charac-

eristics such as catchment climate and land cover ( Larned et al. 2016 ).

.3. Twenty-year water quality trends 

At the national scale, the 20-year river water quality trends in New

ealand indicate appreciable variation in trend direction between sites

or all variables but also some general patterns in aggregate trend di-

ection, which differed between variables. A striking aggregate pattern

t the national scale is increasing nitrogen but decreasing phosphorus.

hese patterns have been identified in New Zealand’s river water quality

ata by previous studies ( McDowell et al. 2019 ; Snelder et al. 2021a ).

n the past 40 years, pastoral agriculture in New Zealand has experi-

nced significant intensification and diversification ( Smith and Mont-

omery 2004 ; MacLeod and Moller 2006 ). The changes include in-

reased fertilizer and supplementary feed input, expansion of irrigation,

nd increased dairy farming and contraction of sheep and beef farming

 MacLeod and Moller 2006 ). Concerns about water quality impacts have

riggered requirements for the agriculture sector to improve manage-

ent of fertilizer, livestock effluent and irrigation water and to reduce

tock access to streams, increase riparian protection and increase tree

lanting on erodible hill country ( Monaghan et al. 2021 ). 

McDowell et al. (2019) suggest that decreasing trends in river DRP

nd TP concentrations over the last 20 years may be attributable to

he growing use of mitigation measures to reduce the loss of phospho-

us from agricultural land (e.g., shifting from high to low solubility

ertilizers). In contrast, increasing trends in NNN and TN are consis-

ent with limitations in the ability to mitigate nitrogen loss from farms

 Monaghan et al. 2021 ) and increasing nitrogen fertilizer use on agri-
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M  
ultural land, which is driven by replacement of the formerly dominant

heep industry by dairy farming ( Dymond et al. 2013 ; MFE and StatsNZ

019 ). 

Our analysis indicates that aggregate trend direction varies between

patial domains. For example, the national-scale pattern of increasing

NN and decreasing DRP was repeated in the Waikato, Canterbury and

outhland regions but was reversed in the Hawkes Bay region ( Fig. 6 ).

nelder et al. (2021a) showed that regional variation in changes in the

ntensity of agriculture, as indicated by changes in the density of pas-

oral animals, explains some of the variation in water quality trends

ithin New Zealand over the last 20 years. The finding by this study

hat aggregate trend direction varies between regions is consistent with

nter-regional variation in changes in agricultural land use of the last 20

ears. 

. Conclusions 

The minimum level of information that land and water managers re-

uire regarding changes in monitored environmental variables over time

s whether they are increasing or decreasing, both at individual sites and

t larger spatial scales, and the degree of statistical support for these

ssessments. In this article we provide approaches for assessing confi-

ence in trend direction at site and larger scales in continuous, rather

han binary (i.e., significant/non-significant) terms. These continuous

easures of confidence can be expressed categorically, and statements

an be made such as “it is likely that the national trend in nitrate be-

ween 2001 and 2020 was increasing ”. This means that we assess there

s at least a 67 out of 100 chance that the direction was increasing. This

llows for a natural approach to the presentation of information about

he certainty associated with a trend assessment ( Hirsch et al. 2015 ). Ex-

ressing confidence in this way also helps to clarify to decision makers

hat they must consider trade-offs involving the risks, costs and benefits

f taking action or not. 

Our example analysis reveals that there are patterns in the direc-

ion of trends in New Zealand’s river water quality at various spatial

cales. Assessment of patterns in trend direction at various spatial scales,

nd robust evaluation of confidence in these assessments, is relevant to

anagers and decision makers who need to consider the pressures or

anagement actions that are driving these trends and to formulate ap-

ropriate responses. 
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