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Executive Summary 

Catchment water quality models were developed for the four major river basins in the Horizons 

Region: the Manawatū (including the Horowhenua and Coastal Tararua catchments), the 

Rangitikei, the Whanganui, and the Whangaehu (including the Turakina River catchment). The 

entire Manawatū- Whanganui region is encapsulated by the four models. The models use sub-

catchment export and attenuation coefficients and point source load estimates to simulate the 

generation, transport, and downstream delivery of total nitrogen (TN) loads throughout the 

region. The models were developed to investigate the impact of regulating nitrogen discharge 

allowances from intensively farmed land throughout the region. It is anticipated that the models 

will be used to estimate loads and concentrations under a range of potential management 

scenarios. 

A satisfactory calibration was achieved for all four basin models. Downstream calibration 

targets (observed TN loads) were all achieved with sensible adjustments to upstream 

attenuation coefficients, within expected ranges, and, in a limited number of cases, minor 

adjustments to independently derived export coefficients. Patterns of attenuation within, and 

between, basins have been noted but not yet fully explained. 

Models are uncertain, and the uncertainty of the key model parameters (the attenuation 

coefficients) have been demonstrated in this report. This uncertainty is largely unavoidable and 

results from uncertainty in the water quality station TN loads and estimated sub-catchment TN 

export coefficients. This uncertainty needs to be considered when using the models to make 

predictions of TN loads and concentrations under different management scenarios. The 

estimated loads and concentrations in absolute terms should be regarded as less certain than 

the relative difference in loads and concentrations between locations and scenarios.  
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1 Introduction 

Horizons Regional Council (HRC) has proposed a change to its Regional Policy Statement 

and Regional Plan (the One Plan) known as Plan Change 2. Proposed Plan Change 2 is 

focused on the One Plan's provisions that manage nutrient loss from existing intensive farming 

land uses (dairy farming, commercial vegetable growing, cropping, and intensive sheep and 

beef) in target water management sub-zones.  These provisions are no longer working as 

intended when the One Plan was developed. Proposed Plan Change 2 will update the 

cumulative nitrogen leaching maximums in the One Plan Table 14.2 to reflect improvements 

in the nutrient modelling software tool Overseer; reinforce good management practices as part 

of intensive farming land use activities; and provide a workable pathway for landowners to 

apply for resource consent for intensive farming land use activities that cannot achieve Table 

14.2 cumulative leaching maximums. 

Proposed Plan Change 2 will have effects on instream loads and concentrations of nitrogen 

across the Manawatū-Whanganui Region. These effects will be spatially variable for two 

reasons. First, land use changes resulting from Proposed Plan Change 2 will not be evenly 

distributed across the region meaning that future land use intensity will vary between the 

region’s catchments. Second, there is environmentally mediated variation in both potential 

nitrogen losses from land use and the processing of nitrogen (attenuation) as it moves through 

the drainage network. Because these two factors interact, the water quality outcomes of 

proposed Plan Change 2 are complex and their assessment requires catchment water quality 

modelling. This report describes the development and calibration of catchment water quality 

models for the purpose of assessing the impacts of the plan change on in-stream nitrogen 

loads and concentrations across the region. This report does not describe the use of the 

models to assess impacts; this will be the subject of other documentation.  

Catchment water quality models were developed for the Manawatū-Whanganui region’s four 

major river basins: the Manawatū (including the Horowhenua and Coastal Tararua 

catchments), the Rangitikei, the Whanganui, and the Whangaehu (including the Turakina 

River catchment). The entire region is encapsulated by the four models. The models use sub-

catchment export and attenuation coefficients to simulate the generation, transport, and 

downstream delivery of total nitrogen (TN) loads throughout the region. The models can be 

used to investigate the potential effects of nitrogen discharge from land (diffuse source 

discharges) and point source discharges. The models can also be used to assess the effects 

of differing discharge standards throughout the region and to test the effectiveness and 

feasibility of mitigations. The models were developed in a usable framework to allow for future 

application by a range of potential end users. In future use of the models, the primary input 

will be scenario assumptions about land use and nitrogen loss rates, and the primary outputs 

will be loads and concentrations at reporting locations distributed across throughout the river 

network.  

2 Water quality models 

2.1 Model software 

The Horizon models were developed using Streamlined Environmental Limited’s (SEL) 

Contaminant Allocation and Simulation Model (CASM) software. CASM is designed as a 

flexible, and usable, generalized modelling tool for simulating diffuse and point source 

contamination at a catchment scale.  



 

 Page 7 of 51 

CASM calculates the generation of a range of user-defined contaminants at a catchment scale 

and the fate and transport of the contaminants through the catchment’s dendritic stream 

network. Contaminant sources are represented in the model as individual nodes, discharging 

to specific streams of any order. Contaminant sources can be either diffuse (e.g. farms) or 

point (e.g. municipal discharges). Sources can be aggregated for lower resolution models, 

including to a sub-catchment scale, or explicitly represented as individual property nodes for 

higher resolution models. Diffuse source contamination calculations follow the widely used 

“export coefficient” approach, with prescribed areal average mass loading rates (kg ha-1 yr-1) 

linked to land use categories. Point source loading rates are simply user defined for each 

node. Both diffuse and point source loading parameters can be prescribed as seasonally 

variable in CASM.  

Three forms of contaminant attenuation are available in the model: diffuse pathway, instream, 

and reservoir. The first is applicable for diffuse sources only and represents potential mass 

losses occurring from the point of export or leaching to the point of discharge to the receiving 

stream. The second captures attenuation that may occur during downstream transport within 

the stream channel (e.g. due to settling, uptake, or transformation). The third provides for 

additional enhanced attenuation that may occur in intercepting reservoirs as a function of 

residence time. Like the source terms described above, all attenuation parameters can be 

defined seasonally in the model.  

Note that, for the models described here, only diffuse pathway attenuation is included, except 

for two short reaches in the Manawatū River basin. Both export coefficients and attenuation 

coefficients are prescribed on an annual average basis. Parameter seasonality is not included 

in the current models. Additionally, no reservoirs are explicitly included in any of the models. 

Any number of water quality “stations” can be defined in the model at any instream location. 

These model objects provide for output summaries specific to the given location. These 

summaries include total contaminant loads (kg/month), concentration (mg/L), and source 

tracking (a breakdown of contributing upstream sources). Instream target concentrations can 

also be prescribed at these stations for reference, or to trigger mitigation optimization 

calculations (described below). 

The CASM software offers three modes of simulation: deterministic, stochastic, and 

optimization. Deterministic simulations involve the tracking of contaminant mass from point of 

export (diffuse) or discharge (point) through a dendritic stream network to a series of 

downstream monitoring stations. The model varies source loading seasonally, combines loads 

at appropriate locations, and attenuates the loads based on user-defined parameters, 

providing for time-varying loads (and/or concentrations) at any location in the modelled 

catchment. The model also provides useful source tracking output, showing relative 

contributions of load from upstream categories of diffuse and point sources. Up to five (5) 

different user-defined contaminants can be simulated in a single model run.  

Stochastic simulations allow the user to perform a comprehensive uncertainty analysis for their 

constructed model and to frame model predictions in the form of highly useful probability 

distributions. Rather than single value outputs of modelled river concentrations, stochastic 

simulations present these outputs in terms of exceedance probabilities (or “risk”). For 

stochastic simulations, simple probability distributions can be defined for any combination of 

the following key model inputs: export coefficients, diffuse pathway attenuation coefficients, 

and instream attenuation coefficients. Optimization simulations perform the same fate and 

transport calculations as in deterministic and stochastic simulations but also provide an 

optimal mitigation strategy to achieve prescribed downstream water quality concentration 
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targets. Optimality is determined in the model based on user-defined mitigation cost tables 

associated with each source node. Note that only the deterministic mode of simulation was 

used for the modelling described here. 

2.2 Model response, calibration date, basins and sub-catchments 

Previous investigations of nitrogen attenuation in the region have considered soluble inorganic 

nitrogen (SIN) rather than TN (Collins et al., 2017). In this study, the model response was TN 

loads, rather than SIN, because diffuse source nitrogen losses from farms are expressed in 

terms of TN, including the loss rates defined in the One Plan Table 14.2. 

The calibration year was 2012. This year was chosen because it was prior to implementation 

of the One Plan provisions for management of nitrogen discharges to land. Therefore, 2012 

was prior to regulation of intensive farming land use (IFLU) in the region applying Table 14.2. 

The calibrated model therefore represents the pre-regulation baseline and enables us to 

model changes in water quality as a result of implementation of both the operative and 

proposed One Plan nutrient management provisions.  

Each river basin model was subdivided into sub-catchments based on HRC’s Water 

Management Zones (WMZ; Table 1). Each WMZ is represented in one of the four models 

(Figures 1 – 4). 

Table 1. High-level summary of each of the four constructed models 

Model characteristics Manawatū 

River 

Rangitikei 

River 

Whanganui 

River 

Whangaehu 

River 

Total drainage area (ha) 733,600 401,500 750,400 312,800 

Number of WMZ sub-catchments 50 15 32 15 

Total number of diffuse nodes 1425 354 678 327 

Number of point sources 22 8 2 5 

Number of WQ calibration points 31 7 6 6 

Number of explicit tributaries 28 8 12 7 
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Figure 1. Map showing the Manawatū River basin model domain and spatial subdivision by 

WMZs. Note that this model includes the Horowhenua and Coastal Tararua catchments.The 

red points indicate the water quality stations and the blue points indicate the point sources.  
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Figure 2. Map showing the Rangitikei River basin model domain and spatial subdivision by 

WMZs.The red points indicate the water quality stations and the blue points indicate the 

point sources.  
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Figure 3. Map showing the Whanganui River basin model domain and spatial subdivision by 

WMZs. The red points indicate the water quality stations and the blue points indicate the 

point sources.  
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Figure 4. Map showing the Whangaehu River basin model domain and spatial subdivision by 

WMZs. Note that this includes both the Whangaehu and Turakina Rivers and their 

catchments.The red points indicate the water quality stations and the blue points indicate the 

point sources.  
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2.3 Water quality station loads 

Estimates of mean annual loads of TN at 60 water quality stations in 2012 (i.e., the baseline 

year) were derived from monthly TN concentrations and observed or modelled daily flows 

(Figure 1 to 4). Details of the load calculation methods are provided in Appendix A and further 

details are contained in Fraser and Snelder (2019). The locations and magnitudes of the loads 

(as export coefficients kg N ha-1 yr-1) at the water quality stations are shown in Figure 5. 

 

Figure 5. Location and loads (kg TN ha-1 yr-1) at 60 water quality monitoring stations that 

were included in the models.  
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2.4 Point source discharges 

The estimated mean annual loads of TN discharged in 2012 (i.e., the baseline year) at 37 

consented discharges > 20m3 d-1 across the region are shown Figure 6. Data describing 

discharge concentration of TN for these point source discharges were provided by HRC.  The 

point source loads comprised consented discharges that were operating at any time during 

the period 2007-2017. Discharge volume estimates were provided by HRC (mean daily flows, 

based on consented volumes and/or spot observations). Mean concentrations were calculated 

based on continuous or sporadic monitoring records for these discharges. A summary of the 

estimated discharges in 2012 (i.e., the baseline year) and 2017 are provided in Appendix B 

(more details are provided in Fraser and Snelder (2019).  

 

Figure 6. Location and estimated loads (kg TN yr-1) in 2012 of 37 consented point-source 

discharges that were included in the models.  
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2.5 Land use and diffuse source nitrogen export coefficients 

2.5.1 Land use map and changes in land use intensity 

At the time of reporting, the best available land use data representing the baseline year (2012) 

was HRC’s 2008 land use map, which describes regional variation in land use in nine 

categories (Figure 7). The non-congruence of the land use map and the catchment nitrogen 

emission estimates that were used to calibrate the model is unlikely to be statistically 

significant (i.e., any differences resulting from changes in land use between 2008 and 2012 

would be within the model uncertainty). A detailed discussion of the implications of the 

mismatch between the land use map and baseline year is provided in Appendix C.  

2.5.2 Export coefficients 

We used export coefficients based on Bright et al. (2018). Bright et al. (2018) provided 

estimates of nitrogen diffuse source export coefficients under the same nine land use 

categories shown on Figure 7, which apply New Zealand wide. For each land use category, 

the export coefficients defined by Bright et al. (2018) account for variation in export coefficients 

based on a classification defined by defined by four biophysical factors including: climate zone, 

plant available soil water capacity (PAW), and whether the land is irrigable and irrigated. 

Variation in these factors is captured by a small number of categories for each factor. Within 

the Manawatū-Whanganui Region, there are five climate zones, and three PAW categories 

(35mm, 60mm, 120mm). The factors irrigable and irrigated are binary and we use “Y” or “N” 

to discriminate irrigable from non-irrigable land and “Irrigated” and “Dryland” to discriminate 

irrigation status. Details concerning these natural and land use characteristics, and some 

adjustments to Bright et al.'s (2018) export coefficients to account for regionally specific 

conditions and information, are provided below.  

Variation in climate was based on the NZ Meteorological Service Climate Regions map (NZMS 

315/2) following modifications that were made and described by Bright et al. (2018; Figure 8). 
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Figure 7. Land use map representing 9 land use/cover categories. This map represents land 

use in 2008. Note that horticultural land cover is very difficult to distinguish at this scale due 

to the small area of properties.  
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Figure 8. Climate variation described using five different categories. 

Variation in soils described by the PAW was obtained from the fundamental soils layer (Figure 

9). The FSL is described in https://soils.landcareresearch.co.nz/soil-data/fundamental-soil-

layers and the PAW dataset used in this modelling is available at 

https://lris.scinfo.org.nz/layer/100-fsl-profile-available-water/. 

https://soils.landcareresearch.co.nz/soil-data/fundamental-soil-layers
https://soils.landcareresearch.co.nz/soil-data/fundamental-soil-layers
https://lris.scinfo.org.nz/layer/100-fsl-profile-available-water/
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Figure 9. Soil layer representing variation in PAW in four categories. 
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Irrigable land was described by Bright et al. (2018) based on combining LUC and land slope 

(Figure 10). 

 

Figure 10. Irrigable land layer representing areas that are feasibly irrigated. 
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Irrigated land was obtained from https://data.mfe.govt.nz/layer/90838-irrigated-land-area-

2017/ (Figure 11). This layer pertains to 2017 however, there has not been a significant 

increase in irrigation since 2012 and it was therefore considered to be sufficiently 

representative (Figure 11). 

 

Figure 11. Irrigated land layer representing areas that are assessed to be irrigated. 

 

https://data.mfe.govt.nz/layer/90838-irrigated-land-area-2017/
https://data.mfe.govt.nz/layer/90838-irrigated-land-area-2017/
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Bright et al. (2018) provide tables of export coefficients for most combinations of the nine land 

use types and the categories for each of the four other biophysical factors (climate, PAW, 

irrigable and irrigated) that occur in the Manawatū-Whanganui Region. We made some 

adjustments to these export coefficients to provide a complete coverage and to incorporate 

regionally specific information. First, we used export coefficients from vegetable growing areas 

in Horowhenua based on loss rates estimated by Bloomer et al. (2020). Second, we increased 

export coefficients for non-productive land from the value of 1 kg N yr-1 provided by Bright et 

al. (2018) to 2 kg N yr-1, which is consistent with values used by Collins et al. (2017) and other 

regional analyses. Third, we assumed export coefficients for exotic cover were 3 kg N yr-1 

based on values used by Collins et al. (2017). Finally, there were areas that were classified 

as non-irrigable, but which were nevertheless irrigated according to the available data. We 

assumed that export coefficients for irrigated but non-irrigable land were the same as irrigated 

and irrigable land.  

To assign export coefficients to all land in the region, we first subdivided each WMZ into a 

discrete number of grid cells based on a 250m by 250m grid. For each grid cell, the 

combination of the table of export coefficients with maps describing land use (Figure 7) and 

the four additional biophysical factors (climate, PAW, irrigable and irrigated) resulted in the 

distribution of diffuse source export coefficients shown in Figure 12. For each land use 

category, the export coefficients account for variation in four biophysical factors including: 

climate zone, plant available soil water capacity (PAW), and whether the land is irrigable and 

irrigated.  

The export coefficients used by this study are general in that they are estimates of average 

rates, within each combination of land use and factor categories, New Zealand wide (Bright et 

al., 2018). However, Bright et al.'s (2018) export coefficients systematically account for 

variation in nitrogen loss rates due to different types biophysical conditions (i.e., variation in 

the four biophysical factors). All estimates of export coefficients are subject to uncertainty and 

will be imprecise when compared to a specific farm property or a more exactly defined 

biophysical context. To provide for a degree of validation of the adopted export coefficients, 

we compared them with the available regionally specific estimates made by other studies. The 

details of these comparisons are described in Appendix C of this report. These comparisons 

show that there is a reasonably high level of consistency in the average values for the nitrogen 

export coefficients provided by the various studies (including the export coefficients that were 

adopted by this study) but that there is also considerable range in these values. These and 

other uncertainties are compounded in the models and mean our confidence is highest when 

the model is used to asesses the difference in water quality outcomes between two scenarios 

in relative terms. A formal analysis of the model uncertainty and assessment of possible 

differences due to land use changes is possible with the CASM models but was beyond the 

scope of this study.  
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Figure 12. Variation of diffuse source export coefficients across the region. Export 

coefficients were derived by combining the 2012 land use map and modifications of export 

coefficients provided by Bright et al. (2018). 
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2.6 Model sub-catchment load aggregation 

The land use capability (LUC) system is a national land classification framework that was 

developed in 1952 and has been refined since then to define biophysical constraints that may 

limit sustained productivity within farm management units (Lynn et al., 2009; Mueller et al., 

2010). Table 14.2 of the One Plan allocates nitrogen loss rate limits to land based on LUC 

categories (categories from 1 to 8) (Figure 13). It was therefore necessary to represent LUC 

categories in the models so that analyses such as future scenario simulations could be defined 

based on LUC categories. Analyses also depend on assumptions about the land use category. 

Therefore, within each of the model sub-catchments (i.e., the WMZs shown in Figure 1 to 

Figure 4), each grid cell was assigned to the combination of its spatially dominant LUC and 

land use categories. Cells pertaining to each of these combined categories were aggregated 

within each sub-catchment and were represented in the models as separate “diffuse-source 

nodes”. Each diffuse-source model node was parameterised with a representative export 

coefficient (derived from Figure 12) and total land area.  
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Figure 13. Land use capability (LUC) layer representing eight land use capability categories. 

2.7 Model calibration 

Each model was calibrated so that modelled downstream nitrogen loads and concentrations 

adequately matched measured data for a series of river monitoring stations. The primary 

calibration parameters were diffuse pathway attenuation coefficients, specific to each WMZ. 

Calibration proceeded from upstream to downstream with manual adjustments to upstream 
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attenuation coefficients, for each calibration point, to achieve an acceptable agreement in the 

water quality calibration targets. The calibration points, with total nitrogen (TN) concentration 

performance measures, are shown in Figures 5 – 8 and summarised in Tables 3 - 6. In a small 

number of cases, export coefficients also required adjustment to achieve an acceptable 

calibration.  

Note that, for some water quality stations, river kilometre marker locations were adjusted 

slightly to be downstream of contributing WMZs. In such cases, we expect modelled 

concentrations to be slightly higher than measured (because the model has effectively 

artificially added additional diffuse load). In other cases, the water quality station includes 

drainage area not included in the upstream WMZ discretization. In these cases, we expect 

modelled concentrations to be lower than measured. These sites are indicated in the summary 

tables.  

The calibration process generally followed the steps listed below. 

1. The calibration was performed for each water quality station calibration point in 

sequence, moving from upstream to downstream. 

2. For each calibration point, all upstream uncalibrated diffuse node attenuation 

coefficients were uniformly adjusted to achieve acceptable modelled vs. measured TN 

concentrations. For all nodes, the model default minimum attenuation of 0.1 was 

maintained. 

3. If an acceptable calibration couldn’t be achieved with adjustments to attenuation 

coefficients alone, sensible adjustments were made to node export coefficients. For this 

study, this step only ever involved an increase in export coefficients from original 

independent parameterisation. For example, for some WMZs the minimum export 

coefficient was increased from 1 to 2 kg ha-1 yr-1 to 4 kg ha-1 yr-1 (e.g. for native and 

exotic cover). 

4. Calibration performance was assessed based on professional judgement, but in most 

cases modelled results were within 10 – 20% of measured values. 

5. For unmonitored WMZs, without a corresponding downstream calibration point, 

attenuation coefficients were assigned based on nearest neighbour calibrated values. 

3 Results 

3.1 Calibration of attenuation 

Summaries of calibrated diffuse attenuation coefficients are provided in Table 2 to Table 5 

and on Figure 14 to Figure 17. A satisfactory calibration was achieved for all four basin 

models. Downstream calibration targets were all achieved with sensible adjustments to 

upstream attenuation coefficients, within expected ranges, and, in a limited number of cases, 

minor adjustments to independently derived export coefficients. In general, a pleasing 

consistency in calibrated attenuation coefficients was achieved within a given basin model. 

For example, a uniform attenuation coefficient of 0.1 (model minimum) was calibrated for the 

entirety of the Whanganui basin. For the Whangaehu basin, greater than 90% of catchment 

attenuation, by area, was calibrated within the range of 0.35 to 0.65. A general gradient of 

high to low attenuation from upland to lowland sub-catchments was apparent in both the 

Manawatū and Rangitikei basins (Figure 18). Variability in attenuation coefficients 

throughout the region is driven by a range of potential factors, including sub-catchment size, 
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land cover, hydrology, and physiography.  Further investigation into this variability is beyond 

the scope of the current study. 

Table 2. Manawatū River basin model calibration results: annual average TN concentrations 

and load. 

Water Quality Station Modelled, 

(mg/L) 

Measured 

(mg/L) 

Unattenuated 

(t/y) 

Attenuated 

(t/y) 

Manawatū at Weber Road 1.6 1.6 1196 652 

Manawatū at Hopelands 1.6 1.6 2250 1421 

Manawatū at Upper Gorge 1.3 1.2 5103 3305 

Manawatū at Teachers College 1.2 1.3 5955 3812 

Manawatū at u/s PNCC STP 1.1 1.21 5981 3491 

Manawatū at ds Fonterra Longburn 1.1 1.0 6888 3881 

Manawatū at Opiki Br 1.2 1.21 6999 3908 

Mangatoro at Mangahei Road 1.5 1.4 341 181 

Tamaki at Stephensons 1.2 1.3 108 97 

Kumeti at Te Rehunga 1.2 1.5 18 16 

Oruakeretaki at d/s PPCS Oringi 

STP 

2.0 2.1 107 96 

Raparapawai at Jackson Rd 1.4 1.4 87 36 

Makakahi at Hamua 1.6 1.32 385 289 

Mangatainoka at Larsons Road 0.4 0.4 40 36 

Mangatainoka at Brewery - S.H.2 

Bridge 

1.6 1.6 846 677 

Makuri at Tuscan Hills 1.7 1.7 225 157 

Tiraumea at Ngaturi 1.3 1.3 1057 574 

Mangahao at Ballance 0.4 0.4 214 193 

Mangapapa at Troup Rd 1.6 1.6 45 26 

Pohangina at Mais Reach 0.4 0.3 484 174 

Oroua at Almadale Slackline 0.8 0.7 464 164 

Oroua at d/s AFFCO Feilding 1.0 1.0 978 365 

Oroua at d/s Feilding STP 1.8 1.9 1273 647 

Oroua at Awahuri Bridge 1.2 1.2 1495 483 

Owahanga at Branscombe Bridge 1.4 1.3 617 247 

Ohau at Gladstone Reserve 0.3 0.3 56 50 

 

Table 3. Rangitikei Model River basin model calibration results: annual average TN 

concentrations and load. 

Water Quality Station Modelled 

(mg/L) 

Measured 

(mg/L) 

Unattenuated 

(t/y) 

Attenuated 

(t/y) 

Rangitikei at Pukeokahu 0.21 0.21 635 159 

Rangitikei at Mangaweka 0.38 0.37 2493 795 

Rangitikei at Onepuhi 0.51 0.54 3442 1270 

Rangitikei at Kakariki 0.49 0.48 3382 1264 

Rangitikei at McKelvies 0.84 0.87 4517 2320 

Hautapu at Alabasters 0.68 0.68 313 94 
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Table 4. Whanganui River basin model calibration results: annual average TN 

concentrations and load. 

Water Quality Station Modelled 

(mg/L) 

Measured 

(mg/L) 

Unattenuated 

(t/y) 

Attenuated 

(t/y) 

Whanganui at Te Maire 0.59 0.58 1641 1478 

Whanganui at Pipiriki 0.68 0.67 4903 4415 

Whanganui at Te Rewa 0.67 0.72 5350 4816 

Whanganui at Paetawa 0.67 0.70 5350 4816 

Ongarue at Taringamotu 0.75 0.76 949 854 

Ohura at Tokorima 1.1 1.1 902 812 

 

Table 5. Whangaehu River basin model calibration results: annual average TN 

concentrations and load. 

Water Quality Station Modelled 

(mg/L) 

Measured 

(mg/L) 

Unattenuated 

(t/y) 

Attenuated 

(t/y) 

Whangaehu at Kauangaroa 0.84 0.84 2390 1194 

Tokiahuru at Junction 0.19 0.19 54 49 

Makotuku at d/s Raetihi STP 0.71 0.60 129 54 

Mangawhero at Pakihi Rd Bridge 0.55 0.52 154 89 

Mangawhero at Raupiu Road 0.82 0.82 986 459 

Turakina at ONeills Bridge 3.6 3.5 1586 951 

 

 

Figure 14. Areal distribution of calibrated attenuation coefficients, Manawatū River basin 
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Figure 15. Areal distribution of calibrated attenuation coefficients, Rangitīkei River basin 

 

 

Figure 16. Areal distribution of calibrated attenuation coefficients, Whanganui River basin 
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Figure 17. Areal distribution of calibrated attenuation coefficients, Whangaehu River basin 
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Figure 18. Map showing attenuation rates for each WMZ represented in the models.  
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3.2 Comparison with previous load calculations and uncertainties 
associated with attenuation estimates 

Singh & Elwan (2017) calculated TN loads at 34 water quality stations that were common to 

this study. Singh & Elwan (2017) used the flow stratification method (see Appendix A) and 

concentration and flow data pertaining to the period from January 2012 to December 2016. 

We compared the water quality station loads estimated by Singh & Elwan (2017) with the 

loads estimated by this study. 

This study’s load estimates are systematically higher than those of Singh and Elwan (2017) 

(Figure 19). There are two potential explanations for these differences. First, even with 

identical input data, different load calculation methods produce different results and these 

differences can be systematic (i.e., leading to a consistent difference; Defew et al., 2013; 

Roygard et al., 2012). Second, loads estimated at the same site, but for different time periods 

can vary significantly (Snelder et al., 2017). The loads estimated by the current study pertained 

to a specific year (2012), which was possible because the calculation methods involved a 

temporal term (see Appendix A). The flow stratification method used by Singh and Elwan 

(2017) does not involve a temporal term and therefore the load estimate can be considered to 

represent the mean annual load for the entire period of record used in the calculation.  

  

Figure 19. Comparison of load estimates for 34 water quality stations made by this study and 

Singh and Elwan (2017).The error bars indicate the 95% confidence interval for the load 

estimates made by this study. The red (1 to 1) line indicates perfect correspondence 

between the two estimates. Note that the axes are log scales.  
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We examined whether the systematic differences in loads estimated by the two studies could 

be associated with differences in the time-periods implied by the calculation methods. We 

examined trends in TN concentrations at the 34 water quality stations over the period used to 

calculate the loads by Singh and Elwan (2017). Raw (i.e., not flow adjusted) trends for these 

sites were produced by Fraser and Snelder (2018) for the five year period ending in 2017 (i.e. 

2013 to 2017 inclusive), which closely corresponds to the period from January 2012 to 

December 2016 period used by Singh and Elwan (2017). We summarised the TN trends in 

two ways. First, we used the proportion of improving trends (PIT; Fraser and Snelder, 2018) 

to represent the overall trend direction over the 34 sites. The PIT statistic had a value of 82% 

(standard error = ±5%), which indicates 82% of sites had improving (i.e., decreasing) TN 

trends in the period. Second, each of the 34 trends was assigned to a category indicating 

confidence that the trend was improving. The summary of the proportions of sites in each 

category indicates that ~75% of sites were at least likely to have improved over the period 

(Figure 19). Only ~9% of sites were unlikely (or less probable) to have had improving trends 

(i.e., the equivalent of the complementary probability they were at least likely to have 

degraded). The decreasing TN trends over most sites in the period between 2013 to 2017 is 

broadly consistent with the systematically higher load estimates made by this study. This 

study’s higher estimates pertain to the start of the period (2012) whereas the estimates made 

by Singh and Elwan (2017) pertain to average over the period in which concentrations 

decreased at most sites.  

 

Figure 20. Summary plot representing the proportion of the 34 sites with improving 5-year 

time period trends at each categorical level of confidence. The plot shows the proportion of 

sites for which water quality was improving at nine levels of confidence defined by (Fraser 

and Snelder, 2018). Green colours indicate improving sites, and red-orange colours indicate 

degrading sites. Trends used in this graph are not flow adjusted. 
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Other studies have estimated nitrogen attenuation factors (𝐴𝐹𝑁) for the same water quality 

stations represented by this study (e.g., Elwan et al., 2015). We calculated effective net 

attenuation coefficients, 𝐴𝐹𝑁, for the 34 water quality stations in common to this study and 

Singh and Elwan (2017). These net attenuation coefficients represent the combined result of 

all upstream diffuse-source node calibrated attenuation coefficients, combined with upstream 

unattenuated point sources, and were calculated as follows: 

𝐴𝐹𝑁 =
𝐿𝑐 − 𝐿𝑤𝑞𝑠

𝐿𝑐
 Equation 1 

 

where 𝐿𝑐  is the estimated catchment source load (including the diffuse and point sources) and 

𝐿𝑤𝑞𝑠 is the estimated water quality station load. These values have the same physical meaning 

as the attenuation coefficients derived by the CASM calibration. However, in the discussion 

that follows we refer to them as 𝐴𝐹𝑁 values because we are not referring directly to the CASM 

attenuation coefficients.  

Close agreement between 𝐴𝐹𝑁 values estimated by different studies is unlikely due to two 

sources of uncertainty. First, as described above, estimates of loads for the same water quality 

station are likely to vary between load calculation methods and time periods. Second, to 

estimate attenuation, an estimate of the catchment source loads is required, and this 

calculation is likely to differ considerably between studies and to be uncertain.  

We demonstrate the range of uncertainty of 𝐴𝐹𝑁 estimates made using the data provided by 

this study. We compare this study’s 𝐴𝐹𝑁 values with those estimated using the same 

catchment source loads but with the 34 water quality station loads estimated by Singh and 

Elwan (2017) that are in common. We estimated the uncertainty of this study’s 𝐴𝐹𝑁 values by 

combining the uncertainty of the water quality station load estimates with an assumed 

uncertainty of the catchment source loads using the following relationship: 

𝑢(𝐴𝐹𝑁)

𝐴𝐹𝑁
= √[

𝑢(𝐿𝑤𝑞𝑠)

𝐿𝑤𝑞𝑠
]

2

+  [
𝑢(𝐿𝑐)

𝐿𝑐
]

2

 Equation 2 

where, 𝑢(𝐴𝐹𝑛) 𝐴𝐹𝑁⁄  is the relative uncertainty in the estimate of the nitrogen attenuation factor, 

𝑢(𝐿𝑤𝑞𝑠) 𝐿𝑤𝑞𝑠⁄  is the relative uncertainty in the estimated water quality station load and, 

𝑢(𝐿𝑐) 𝐿𝑐⁄  is the relative uncertainty in the estimated catchment source load. We assumed a 

relative uncertainty of the estimated catchment source load of 25%, which was based on an 

estimated characteristic uncertainty for the OVERSEER nutrient budgeting model (PCE, 

2018). 

Large uncertainty in the estimates of 𝐴𝐹𝑁 for most sites is shown in Figure 21. Figure 21 also 

indicates that 𝐴𝐹𝑁 estimated using water quality station loads estimated by Singh and Elwan 

(2017) are systematically lower (by about 0.2) compared to the estimates made using water 

quality station loads estimated by this study. The reason for this difference is the systematic 

difference in site loads between the two studies that is shown in Figure 19. Higher water quality 

station loads estimated by this study leads to lower 𝐴𝐹𝑁 estimates compared to estimates 

using the loads of Singh and Elwan (2017). However, the 95% confidence intervals indicate 

that for individual sites, the uncertainty in 𝐴𝐹𝑁 estimated by this study always encompass the 

value of 𝐴𝐹𝑁 if the water quality station loads estimated by Singh and Elwan (2017) were used. 

In other words, the published Singh and Elwan (2017) values fall within the estimated 

confidence intervals for this study. 
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Figure 21. Comparison of 𝐴𝐹𝑁 estimated using load estimates for 34 water quality stations 

made by this study and (Singh and Elwan, 2017).The error bars indicate the 95% confidence 

intervals for 𝐴𝐹𝑁 estimates for this study.  

4 Conclusion 

Catchment water quality models were developed for the four major river basins in the Horizons 

Region: the Manawatū (including the Horowhenua and Coastal Tararua catchments), the 

Rangitikei, the Whanganui, and the Whangaehu (including the Turakina River catchment). 

The entire region is encapsulated by the four models. The models use sub-catchment export 

and attenuation coefficients to simulate the generation, transport, and downstream delivery of 

total nitrogen loads throughout the region. The models were developed to investigate the 

impact of regulating nitrogen discharge allowances from intensively farmed land throughout 

the region, particularly with respect to mitigation implications and feasibility. The models were 

developed in a usable framework to allow for future application by a range of potential end 

users. 

A satisfactory calibration was achieved for all four basin models. Downstream calibration 

targets were all achieved with sensible adjustments to upstream attenuation coefficients, 

within expected ranges, and, in a limited number of cases, minor adjustments to independently 

derived export coefficients. Patterns of attenuation within, and between, basins have been 

noted but not yet fully explained.  
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Ideally, water quality models are calibrated to land use and catchment nitrogen emission 

estimates that are congruent and pertain to a specific point in time. In this study, the available 

land use map and catchment nitrogen emission data were not congruent in time. Limitations 

associated with data meant that models were calibrated to the land use pattern pertaining to 

2008 and to diffuse source export coefficients and water quality station loads pertaining to 

2012. However, we consider these inconsistencies are acceptable due to the relatively 

imprecise nature of the nitrogen emission estimates. Taken together, the uncertainties in the 

model input data mean that potential differences in model predictions resulting from the non-

congruence of dates for the land use and catchment nitrogen emission estimates and the 

baseline are unlikely to be statistically significant (i.e., any differences would be within the 

model uncertainty). A formal analysis of the model uncertainty and assessment of possible 

differences due to land use changes is possible with the CASM models but was beyond the 

scope of this study.  

Models are uncertain, and the uncertainty of the key model parameter (attenuation coefficient) 

has been demonstrated in this report. This uncertainty is largely unavoidable and results from 

uncertainty in the water quality station loads and estimated sub-catchment source loads. This 

uncertainty needs to be considered when using the models to make simulations of future 

scenarios. The absolute values of load and concentrations predicted for a scenario should be 

regarded as less certain than the relative change. Like most models, these catchment models 

are better suited for predicting relative changes in basin water quality rather than absolute 

values. In other words, it may be wise to frame future scenario simulation results in terms of 

relative changes compared to the “baseline” models presented here. Further, applying relative 

(e.g. percentage) changes to model input parameters (e.g. export coefficients) may be a more 

defensible approach for scenario simulations than prescribing absolute values. That said, 

these models represent the best available science for investigating the fundamental questions 

of the wider study and can serve as valuable supporting tools for decision-making.  
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Appendix A Water quality station load calculations 

A1 General approach 

Mean annual TN loads at all water quality stations in 2012 were derived from monthly TN 

concentrations and observed or modelled daily flows. Load calculation methods generally 

comprise two steps: (1) the generation of a series of flow and concentration pairs representing 

‘unit loads’ and (2) the summation of the unit loads over time to obtain the total load. In practice 

step 1 precedes step two but in the explanation that follows, we describe step 2 first.  

If flow and concentration observations were available for each day, the export coefficient, (the 

mean annual load, standardised by the upstream catchment area) would be the summation of 

the daily flows multiplied by their corresponding concentrations: 

𝐿 =
𝐾

𝐴𝑐𝑁
 ∑ 𝐶𝑗𝑄𝑗

𝑁
𝑗=1        (Equation 3) 

where L: mean annual export coefficient (kg yr-1 ha-1), Ac: catchment area, ha, K: units 

conversion factor (31.6 kg s mg-1 yr-1), 𝐶𝑗: TN concentration for each day in period of record 

(mg m-3), 𝑄𝑗: daily mean flow for each day in period of record (m3 s-1), and N: number of days 

in period of record.  

In this summation, the individual products represent unit loads. Because concentration data 

are generally only available for infrequent days (i.e., generally in this study, monthly 

observations), unit loads can only be calculated for these days. However, flow is generally 

observed continuously, or the distribution of flows can be estimated for locations without 

continuous flow data, and there are often relationships between concentration and flow, time 

and/or season. Rating curves exploit these relationships by deriving a relationship between 

the sampled nutrient concentrations (ci) and simultaneous observations of flow (qi). Depending 

on the approach, relationships between concentration and time and season may be included 

in the rating curve. This rating curve is then used to generate a series of flow and concentration 

pairs (i.e., to represent Qj  and Cj in equation 1) for each day of the entire sampling period (i.e., 

step 1 of the calculation method; Cohn et al., 1989). The estimated flow and concentration 

pairs are then multiplied to estimate unit loads, and these are then summed and transformed 

by K, N and Ac to estimate mean annual export coefficients (i.e., step 2 of the calculation 

method; Equation 1).   

There are a variety of approaches to defining rating curves. Identifying the most appropriate 

approach to defining the rating curve requires careful inspection of the available data for each 

site and contaminant. The details of the approaches and the examination of the data are 

summarised below. Further details are provided by Fraser and Snelder (2019). 

A2 Load calculation methods 

A2.1 L7 model 

Two regression model approaches to defining rating curves of (Cohn et al., 1989, 1992) and 

(Cohn, 2005) are commonly used to calculate loads. The regression models relate the log of 

concentration to the sum of three explanatory variables: discharge, time, and season. The L7 

model is based on seven fitted parameters given by: 
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𝑙𝑛(𝐶𝑖̂) =  𝛽1 +  𝛽2 [𝑙𝑛(𝑞𝑖) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + 𝛽3 [𝑙𝑛(𝑞𝑖) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
2

+ 𝛽4(𝑡𝑖 − 𝑇̅)

+ 𝛽5(𝑡𝑖 − 𝑇̅)2 + 𝛽6𝑠𝑖𝑛(2𝜋𝑡𝑖) + 𝛽7𝑐𝑜𝑠(2𝜋𝑡𝑖) 

(Equation 4) 

where, i is the index for the concentration observations,  𝛽1,2,..7: regression coefficients, 𝑡𝑖: time 

in decimal years, 𝑇̅: mean value of time in decimal years, (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅  mean of the natural log of 

discharge on the sampled days, and 𝐶𝑖̂: is the estimated ith concentration. 

The coefficients are estimated from the sample data by linear regression, and when the 

resulting fitted model is significant (p < 0.05), it is then used to estimate the concentration on 

each day in the sample period, 𝑙𝑛(𝐶𝑗̂). The resulting estimates of 𝑙𝑛(𝐶𝑗̂) are back-transformed 

(by exponentiation) to concentration units. Because the models are fitted to the log 

transformed concentrations the back-transformed predictions were corrected for 

retransformation bias. We used the smearing estimate (Duan, 1983) as a correction factor (S):  

𝑆 =  
1

𝑛
∑ 𝑒𝜀𝑖̂𝑛

𝑖=1         (Equation 5)  

where, 𝜀̂ are the residuals of the regression models, and n is the number of flow-concentration 

observations. The smearing estimate assumes that the residuals are homoscedastic and 

therefore the correction factor is applicable over the full range of the predictions. 

The average annual load is then calculated by combining the flow and estimated concentration 

time series:  

𝐿 =
𝐾𝑆

𝑁
 ∑ 𝐶̂𝑗𝑄𝑗

𝑁
𝑗=1         (Equation 6) 

If the fitted model is not significant, 𝐶𝑗̂  is replaced by the mean concentration and S is unity.   

To provide an estimate of the load at a specific date, (in this study test = 1/12/2012) a 

transformation is performed so that the year components of all dates (tj) are shifted such that 

all transformed dates lie within a one-year period centred on the proposed observation date 

(i.e. Y=1/6/2012 to 31/6/2013).   

𝑙𝑛 (𝐶𝑗
𝑌̂) =  𝛽1 +  𝛽2 [𝑙𝑛(𝑞𝑗) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + 𝛽3 [𝑙𝑛(𝑞𝑗) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

2
+ 𝛽4(𝑌𝑗 − 𝑇̅)

+ 𝛽5(𝑌𝑗 − 𝑇̅)
2

+ 𝛽6𝑠𝑖𝑛(2𝜋𝑌𝑗) + 𝛽7𝑐𝑜𝑠(2𝜋𝑌𝑗) 

(Equation 7) 

where 𝐶𝑗
𝑌̂ is the estimated jth concentration for the estimation year, and Yj is the transformed 

date of the ith observation, and all other variables are as per equation 6. We use this approach 

to estimate loads for the analysis that are representative of the middle of the stated time period 

(i.e. the full calendar year of 2012 

).  The regression coefficients (𝛽1,2,..7) are those derived from fitting Equation 7 to the 

observation dataset.  It follows that the estimated load for the year of interest can be calculated 

by:   

𝐿𝑌 =
𝐾𝑆

𝑁
 ∑ 𝐶̂𝑗

𝑌𝑄𝑗
𝑁
𝑗=1        (Equation 8) 

4.1.1.1 L5 Model 

The L5 model is the same as the L7 model except that two quadratic terms are eliminated:  
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𝑙𝑛(𝐶𝑖̂) =  𝛽1 +  𝛽2(𝑙𝑛(𝑞𝑖)) + 𝛽3(𝑡𝑖) + 𝛽4𝑠𝑖𝑛(2𝜋𝑡𝑖) + 𝛽5𝑐𝑜𝑠(2𝜋𝑡𝑖) (Equation 9) 

The five parameters are estimated, and loads are calculated in the same manner as the L7 

model.  Following the approach outlined for the L7 model, the L5 model can be adjusted when 

used for prediction to provide estimates for a selected load estimation date: 

𝑙𝑛 (𝐶𝑗
𝑌̂) =  𝛽1 +  𝛽2[𝑙𝑛(𝑞𝑗)] + +𝛽4(𝑌𝑗 − 𝑇̅) + 𝛽6𝑠𝑖𝑛(2𝜋𝑌𝑗) + 𝛽7𝑐𝑜𝑠(2𝜋𝑌𝑗) (Equation 10) 

A2.2 Flow stratification  

Roygard et al. (2012) employed a flow stratification approach to defining rating curves. This 

approach is based on a non-parametric rating curve, which is defined by evaluating the mean 

concentration within equal increments of the flow probability distribution (flow ‘bins’).  In their 

application, Roygard et al. (2012) employed ten equal time-based categories (flow decile bins), 

defined using flow distribution statistics and then calculated mean concentrations within each 

bin. This non-parametric rating curve can then be used to estimate nutrient concentrations, 𝐶̂, 

for all days with flow observations. At step 2, the load is calculated using Equation 11, 

providing an estimate of average annual load over the observation time period. 

𝐿 =
𝐾

𝑁
 ∑ 𝐶̂𝑗𝑄𝑗

𝑁

𝑗=1

 
(Equation 11) 

where 𝐶𝑗̂ is calculated mean concentration associated with the flow quantile bin of the flow Qj., 

and all other variables are as per equation 5. 

4.1.1.2 Flow stratification with trend 

We included a modified version of the flow stratification method to account for trends in water 

quality. This is useful when loads are required to be estimated for a particular point in time, 

rather than as an average over the complete observation period, particularly when there is a 

strong trend evident. We detrended the observation data by fitting Equation 12 to the 

concentration time series. 

𝑙𝑛(𝐶𝑖̂) =  𝛽1 + 𝛽2(𝑡𝑖) 
(Equation 12) 

We then used the concentration residuals to develop a non-parametric rating curve.  𝐶𝑗̂ is 

calculated as the mean residual concentration associated with the flow quantile bin of the flow 

Qj., plus the predicted value of concentration at time Tj, which is multiplied by the smearing 

coefficient to account for the log transformation of Equation 12). 

A3 Precision of load estimates 

The statistical precision of a sample statistic, in this study the mean annual load, is the amount 

by which it can be expected to fluctuate from the population parameter it is estimating due to 

sample error. In this study, the precision represents the repeatability of the estimated load if it 

was re-estimated using the same method under the same conditions. Precision is 

characterised by the standard deviation of the sample statistic, commonly referred to as the 

standard error. We evaluated the standard error of each load estimate by bootstrap resampling 

(Efron, 1981). For each load estimate we constructed 100 resamples of the concentration data 

(of equal size to the observed dataset), each of which was obtained by random sampling with 
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replacement from the original dataset. Using each of these datasets, we recalculated the site 

load and estimated the 95% confidence intervals, using the boot r package.  We represent 

precision in the results as the 95% confidence interval range, standardised by the load 

estimate (i.e., represented as a proportion). 

A4 Selection of best load estimation methodology 

TN loads were calculated for all sites using each of the four load estimation methods. We 

evaluated the performance of each rating curve method for predicting observed 

concentrations, using a range of model performance measures (see Fraser and Snelder 

(2019) for details). We identified site loads and method combinations that had any of: 

1. large export coefficient values (i.e., site load divided by catchment area); 

2. large differences in the loads calculated using different methods. 

For these site and method combinations (approximately 10-20% of sites for each nutrient 

variable), we manually inspected diagnostic plots (e.g. C-Q plots, C-T plots, comparisons of 

sampled flow distributions relative to observed flow distributions). We used expert judgement 

to select the most appropriate load estimation method for each site that were outside of the 

two criteria outlined above. As well as selecting from one of the four rating curve methods 

described above, we also allowed sites to be discarded at this stage if no method appeared 

to satisfactorily describe the observed behaviour. This process also suggested that, for the 

manually inspected sites, the selection of the model with the lowest RMSD (in terms of 

performance in predicting observed concentrations) was the criteria most consistent with the 

outcomes of the expert judgement.  For the remainder of the site and nutrient variable 

combinations that were not flagged by the above criteria (and for which the diagnostic plots 

were not inspected), the most appropriate load estimation method was selected as the rating 

curve method that yielded the lowest RMSD. 
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Appendix B Point source load estimates in 2012 and 2017 

Point Source Site Name Load (kg/year) 

2012 2017 

AFFCO Fielding at Industrial Waste water 66940 47762 

Ashhurst STP at Secondary oxpond waste 6364 1877 

Bulls STP at Secondary oxpond waste 2673 2632 

Dannevirke STP at microfiltered oxpond 55125 68217 

DB Breweries at Industrial wastewater 1914 388 

Eketahuna STP at Secondary oxpond waste 497 592 

Feilding STP at Secondary oxpond waste 272778 302043 

Fonterra Pahiatua wastewater 359 132 

Foxton STP at Secondary oxpond waste 17227 16068 

Halcombe at Secondary oxpond 1106 895 

Hunterville STP at Microfiltration Plant 818 311 

Kimbolton STP at oxpond waste 2147 1102 

Longburn STP at oxpond waste 1085 572 

Marton STP at Rock filtered oxpond waste 31755 31990 

National Park STP at Secondary oxpond 2964 884 

Norsewood STP at oxpond waste 890 716 

NZ Pharmaceuticals wastewater 9150 0 

Ohakea STP at Effluent outfall 3150 3595 

Ohakune STP at Secondary oxpond waste 23565 28234 

Ormondville STP at 2nd oxpond waste 242 205 

Pahiatua STP at Tertiary oxpond waste 3278 2093 

PNCC STP at Tertiary Treated Effluent 535542 579568 

Pongaroa STP at 2nd oxpond waste 397 342 

PPCS Oringi STP at oxpond waste 626 358 

PPCS Shannon at Clarifier Effluent 54743 19675 

Raetihi STP at Secondary oxpond waste 3324 3436 

Rangataua STP at Secondary oxpond waste 176 187 

Ratana STP at Secondary oxpond waste 793 524 

Riverlands at Industrial wastewater 24812 28723 

Rongotea STP at Secondary oxpond waste 4003 2804 

Sanson STP at Secondary oxpond waste 4044 4318 

Shannon STP at oxpond waste 51867 15797 

Taihape STP at oxpond waste 7074 4672 

Taumarunui STP at Tertiary treated waste 13171 14707 

Tokomaru at oxpond waste 806 490 

Waiouru STP at oxpond waste 23613 11699 

Woodville STP at Secondary oxpond waste 1845 2262 

 



 

 Page 44 of 51 

Appendix C Land use and export coefficient considerations 

C1 Land use map 

At the time of reporting, the best available land use data was HRC’s 2008 land use map, which 

describes regional variation in land use in nine categories (Figure 7). Changes in total stock 

numbers between 2007 and 2012 (i.e., the baseline year) in the region were evaluated at the 

WMSZ level by Fraser and Snelder (2020). These data provide an indication of the change in 

land use intensity, and therefore, provide an indication of the potential difference in nitrogen 

emissions from land use between 2007 and 2012. 

Data was available describing the number of animals in four stock type categories (dairy cows, 

beef cows, sheep and deer) that are collected on all enterprises involved in livestock farming 

by Statistics New Zealand as part of an annual agricultural production census (APC). Fraser 

and Snelder (2020) used these data to estimate the numbers of pastoral animals in each 

WMSZ and further modified these to indicate the land use intensity. To produce these 

measures, Fraser and Snelder (2020) used publicly available APC data, which are associated 

with a spatial layer comprising 960 hexagonal grid cells (35,000 ha) that cover all New Zealand 

(https://statisticsnz.shinyapps.io/livestock_numbers/). The grid cells were intersected with the 

polygons representing each WMSZ to evaluate the numbers of animals of each stock type in 

each zone in 2007 and 2012. The numbers of animals of each stock type were converted to 

‘stock units’ which is a measure of metabolic demand that is commonly used in New Zealand 

(Parker, 1998). The stock units within each WMSZ were summed and divided by the area of 

the WMSZ to define the stock unit density (SU ha-1) for 2007 and 2012. Differences in stock 

unit density between 2007 and 2012, expressed as percentages of 2012 density, were 

evaluated and used to represent change in land use intensity within each WMSZ.  

The changes in stock unit density between 2007 and 2012 across the 124 WMSZs indicate 

that land use intensity generally decreased across the region (Table 6, Figure 22). Changes 

in land use intensity in either direction were less than 10% for 62% of the WMSZs and less 

than 20% for 91% of WMSZs (Table 6). The largest changes in land use intensity in relative 

terms occurred in WMSZs with the lowest levels of land use (Figure 22). 

Table 6. Changes in land use intensity between 2007 and 2012 across the 124 WMSZs. 

Change between 2007 and 2012 (%) Proportion of WMZs (%) 

< -20 7 

-20 to -10 23 

-10% to -5% 34 

-5% to 0% 10 

0% to 5% 9 

5% to 10% 9 

10% to 20% 6 

>20% 3 
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Figure 22. Changes in stock unit density between 2007 and 2012 across the 124 WMSZs. 
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The changes in stock between 2007 and 2012 (total stock unit density SU ha-1; Table 6, Figure 

22) indicate that changes in land use intensity were generally less than 20% across all 

WMSZs. A proportion of these changes will have been changes of management on farms and 

therefore land use per se can be expected to have changed by less than this amount between 

2007 and 2012. The land use pattern is relevant to the water quality models because it is used 

to estimate the magnitude of the diffuse source nitrogen export coefficients, which are 

discussed further below. 

C2 Comparison of available export coefficient estimates 

Export coefficients for a given farming operation vary depending on the characteristics of the 

farm. For example, climate and soils strongly influence nitrogen leaching losses, and, 

therefore, export coefficients are expected to vary in response to these factors. The available 

regionally-specific export coefficient estimates were either farm or catchment specific and did 

not allow us to account for variation in farm characteristics that occur at the regional scale. In 

contrast, the export coefficients defined by Bright et al. (2018) accounted for variation due to 

four biophysical factors including: climate zone, plant available soil water capacity (PAW), and 

whether the land is irrigable and irrigated. We therefore considered that the export coefficients 

defined by Bright et al. (2018) were the most appropriate estimates for this regional scale 

study but that the regionally-specific estimates made by other studies provided the opportunity 

to verify this decision. In the following section we compare the export coefficients that were 

used in this study (based on Bright et al., 2018) with the available regionally specific estimates. 

There were several regionally-specific sources of diffuse source nitrogen emission estimates 

from farms. First, the dairy farm consents database contains estimated nitrogen emissions 

from 211 dairy farms in the region based on their operations in 2012 and the OVERSEER 

nutrient budgeting model. Nitrogen emissions as export coefficients (i.e., kg N ha-1 yr-1) were 

re-estimated for all farms in the database using version 6.2.2 of OVERSEER and the base 

files pertaining to 2012. This produced a set of export coefficients for the dairy farms that were 

consistent with the cumulative nitrogen leaching maximums in the updated One Plan Table 

14 that is contained in Proposed Plan Change 2. Second, several studies have estimated 

average export coefficients from farms of different types (primarily sheep and/or beef and 

dairy) in different catchments within of the region (Collins et al., 2017; Manderson, 2015; Singh 

and Elwan 2017).  

We undertook a comparison of the estimated dairy farm export coefficients provided by the 

consents database with those defined by Bright et al. (2018) and those of Manderson et al. 

(2016) as reported by Singh et al. (2017). We first allocated the consents database farms to 

the same biophysical classes used by Bright et al. (2018), i.e. climate zone (Figure 8), a PAW 

category (Figure 9) irrigable (Figure 10) and irrigated (Figure 11). To do this we constructed a 

circular 800m buffer around the coordinates provided for each farm in the consents database 

(note that we did not have access to the farm boundaries). We chose 800m to emulate the 

mean area of the farms in the database of 200 ha. We intersected the buffer areas 

representing each farm with the spatial layers representing Climate zones, PAW, irrigable and 

irrigated areas. We allocated farms to a Climate, PAW, irrigable and irrigate category based 

on the dominant category of each layer within the buffered areas.  

We then allocated all land in the region categorised as dairy land use (i.e., not just the dairy 

land represented in the consents database; Figure 7) to the stratification used by Bright et al. 

(2018). The relevant export coefficients defined by Bright et al. (2018) were assigned to all the 

strata in the region on which a dairy land use occurs and the area of dairy farms within each 
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strata were obtained. We then inspected the distribution of estimated nitrogen export 

coefficients for groups defined by the strata for the consents database, for all dairy land based 

on Bright et al. (2018) and rates estimated by Manderson et al. (2016).  

The majority (71%) of the farms represented by the consents database were located within 

the South West Coast climate zone (Figure 8). The majority of all dairy farms are also located 

in the South West Coast climate zone (Figure 10). The remaining 14%, 8% and 7% of 

consented farms were in the Lower Hill Country, East Coast and Mountain climate zones. 

There were no consented farms in the North West climate zone and only a small proportion of 

all the dairy farms in the region were in this zone.  

There was considerable variation in the export coefficients derived from the consents 

database even within climate zones, PAW and irrigation categories (Figure 23). The 

consents database export coefficients were, on average, lowest in the South West Coast 

climate zone. In the South West Coast climate zone, the central tendency of the consents 

database values were reasonably consistent with the median values of Manderson et al. 

(2016) as reported by (Singh et al., 2017). The consistency within the South West Coast 

climate zone is expected because the dairy farms in the Rangitikei Catchment, on which the 

estimates of Manderson et al. (2016) were focussed, are mainly located within the South 

West Coast climate zone. Manderson et al. (2016) however reported a large range in the 

values and that level of variation was reasonably consistent with the variation in the values 

derived from the consents database. In the other climate zones, the majority of export 

coefficients derived from the consents database and Bright et al. (2018) were within the 

range of Manderson et al. (2016). The export coefficients derived from Bright et al. (2018) 

were generally reasonably consistent with those derived from the consents database (i.e., 

were generally within the interquartile range). The export coefficients derived from Bright et 

al. (2018) were always higher than the median values of Manderson et al. (2016) but were 

always within range of values except for one strata in the South West Coast zone.   
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Figure 23. Comparison of diffuse source export coefficients for dairy farms provided from a 

range of sources within each strata (i.e., Climate, PAW, irrigable and irrigate categories) 

used by Bright et al. (2018). The box and whisker plots show the distributions of nitrogen 

leaching rates estimated for farms in the consents database. The box indicates the inter-

quartile range and the horizontal bar within the box indicates the median. The whiskers 

indicate the lowest datum still within 1.5 IQR of the lower quartile, and the highest datum still 

within 1.5 IQR of the upper quartile. Outliers are indicated by black dots. The red dots show 

the equivalent rates defined by Bright et al. (2018). The dots are scaled to represent the total 

area of dairy farms in the region. The red dashed lines indicate the lower and upper bounds 

and the green dashed lines represent the median for low, medium and high intensity of dairy 

farm loss rates reported for the Rangitikei catchment by Manderson et al. (2016) as reported 

by (Singh et al., 2017). Note that dairy farms having some combinations of climate and PAW 

categories are not represented by any farm in the consents database.  
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We undertook a comparison of export coefficients for sheep and beef farming defined by Bright 

et al. (2018) with those estimated for the Mangatainoka catchment by Manderson (2015) and 

the Rangitikei catchment by Manderson et al. (2016). Manderson (2015) estimated export 

coefficients for sheep and beef farms in the Mangatainoka catchment using three methods. 

Methods 1 and 3 considered many farms but omitted consideration of farm management 

practice. These methods produced rates between 9.6 kg ha-1 yr-1 to 12.2 kg ha-1 yr-1. Method 

2 was based on a more detailed consideration of a small number of farms on different types 

of terrain. The method produced higher N loss estimates of 20.2 kg ha-1 yr-1, which reduced to 

17 kg ha-1 yr-1 when an annual rainfall of 1300 mm yr-1 was assumed. This lower rainfall is 

consistent with the lower catchment and is within the South West Coast climate zone (Figure 

8). Manderson (2015) suggested a “best” estimate of the export coefficient of 12.9 kg ha-1 yr-

1, which was based on combining the strengths of Method 1 (large sample and strong 

extrapolation) with those of Method 2 (inclusion of farm management effects). Sheep and beef 

farming export coefficients for the Rangitikei catchment derived by Manderson et al. (2016) 

are reported by Singh et al. (2017). The export coefficients were estimated at between 9 kg 

ha-1 yr-1 and 10.5 kg ha-1 yr-1 under sheep and beef grazing and the range was between 5 kg 

ha-1 yr-1 and 18 kg ha-1 yr-1 depending on the farming intensity.  

We allocated all land in the region categorised as sheep and beef land use to the stratification 

used by Bright et al. (2018). The relevant export coefficients defined by Bright et al. (2018) 

were assigned to all the strata in the region on which sheep and beef use occurs and the area 

of farms within each strata were obtained. We then compared estimated nitrogen export 

coefficients for groups defined by the strata based on Bright et al. (2018) and rates estimated 

by Manderson (2015) and Manderson et al. (2016).  

The export coefficients estimated by Bright et al. (2018) were higher than those of 

Manderson (2015) and Manderson et al. (2016) for all climate zones except Mountains 

(Figure 24). The largest deviations between the estimates were associated with irrigated 

sheep and beef farms. This is probably because the estimates of Manderson (2015) and 

Manderson et al. (2016) were based only on dryland farms. The analysis indicated that 

irrigated sheep and beef farms made up only a small proportion of the total land used for 

sheep and beef farming (Figure 24). For the Mountains climate zone, the export coefficients 

estimated by Bright et al. (2018) were significantly lower than the Manderson estimates. The 

Bright et al. (2018) estimates for the South West Coast climate zone were most consistent 

with the best estimate of Manderson et al. (2016). This consistency is logical because 

Manderson et al.'s (2016) estimates were focussed on farms that are mainly located within 

the South West Coast climate zone.  
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Figure 24. Comparison of diffuse source export coefficients for sheep and beef farms within 

each strata (i.e., Climate, PAW, irrigable and irrigate categories) used by Bright et al. (2018). 

Export coefficients for sheep and beef farms defined by Bright et al. (2018) are shown as red 

dots. The dots are scaled to represent the total area of sheep and beef farms in the region. 

The best estimate of Manderson (2015) for the Mangatainoka catchment (green dashed line) 

and the range in estimates of Manderson et al. (2016) for the Rangitikei Catchment (red 

dashed lines).  

 



 

 Page 51 of 51 

The analysis of nitrogen loss rates detailed in the dairy consents database, previous studies 

and adopted in this study based on Bright et al. (2018), show that there is a reasonably high 

level of consistency in the central tendency of the various estimates but that there is also 

considerable range in plausible nitrogen export coefficients. This indicates that the export 

coefficients that are key input data to the water quality models are highly uncertain. Taken 

together, the uncertainties in the model input data (i.e., land use map and export coefficients) 

mean that potential differences in model predictions resulting from the non-congruence of 

dates for the land use and catchment nitrogen emission estimates are unlikely to be 

statistically significant (i.e., any differences would be within the model uncertainty). In addition, 

the water quality models are calibrated to water quality station nitrogen loads, which are 

themselves uncertain (Figure 22). These uncertainties are all compounded in the models and 

mean our confidence is highest when the model is used to predict the relative difference in 

water quality outcomes between two scenarios. A formal analysis of the model uncertainty 

and assessment of possible differences due to land use changes is possible with the CASM 

models but was beyond the scope of this study.  

 


